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Abstract

Hashing images with a perceptual algorithm is a com-
mon approach to solving duplicate image detection prob-
lems. However, perceptual image hashing algorithms are
differentiable, and are thus vulnerable to gradient-based
adversarial attacks. We demonstrate that not only is it pos-
sible to modify an image to produce an unrelated hash, but
an exact image hash collision between a source and tar-
get image can be produced via minuscule adversarial per-
turbations. In a white box setting, these collisions can be
replicated across nearly every image pair and hash type (in-
cluding both deep and non-learned hashes). Furthermore,
by attacking points other than the output of a hashing func-
tion, an attacker can avoid having to know the details of
a particular algorithm, resulting in collisions that transfer
across different hash sizes or model architectures. Using
these techniques, an adversary can poison the image lookup
table of a duplicate image detection service, resulting in un-
defined or unwanted behavior. Finally, we offer several po-
tential mitigations to gradient-based image hash attacks.

1. Introduction
Adversarial attacks on machine learning algorithms have

received widespread recent attention, as some of the stud-
ied attacks could potentially have dire real-world conse-
quences. In particular, computer vision models have been
shown to be susceptible to imperceptible changes to an im-
age. These changes are generally known as adversarial per-
turbations, and depending on whether or not an attacker has
full or limited access to a model, they seem to ”fool” nearly
all models that make predictions over raw pixels [24, 31].

Image hashing algorithms are used widely in critical pro-
duction systems, and are used to detect anything from copy-
right violations to misinformation [9]. These algorithms al-
low fast lookup and retrieval of duplicate or near-duplicate
images, and thus provide a cheap way to find similar im-
ages among a haystack of billions [2]. While many hashes
are computed with deep networks (and thus are potentially
susceptible to adversarial perturbations), for better scaling,

Figure 1. All images in this figure have the same image hash as the
top-left image.

other systems utilize cheaper non-learned algorithms [1].
Which hashing algorithm to use depends on the application,
but in general, once an algorithm is chosen it remains fixed
to avoid unnecessary re-computation of the hash database.
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However, image hashes, like other hashes, are vulner-
able to collisions, where two different images map to the
same hash. We examine the susceptibility of image hash-
ing algorithms to gradient-based adversarial attacks, but
with several important novel contributions. (1) We con-
sider the entire hashing system, including the image resiz-
ing step, which allows perturbations of full-resolution and
non-cropped images; (2) we examine interior surjective at-
tacks in the regime of deep networks, where we seek to cre-
ate collisions not only at the output of the network, but at the
intermediate output level; (3) we demonstrate that gradient-
based adversarial attacks are not only effective against deep
hashes, but also effective against the type of ”shallow”, non-
learned hashes that are often used in large-scale detection
systems; (4) we show that all of these attacks are effective
not only in a white-box setting, but can transfer between a
variety of models and methods; (5) we use these results to
determine the effectiveness of several mitigation strategies.

2. Background
Duplicate image detection is a well-studied task [5, 6,

14], with many varying solutions and applications. One
may wish to find image duplicates to protect copyright [33],
to remove unwanted or illegal images from a platform [1, 9],
or for forensic analysis [21, 30]. One practical solution to
this problem is to check a probe image against a bank of
known images and subsequently performing an action such
as removal or flagging if a match is found. There are a va-
riety of methods that can be used to perform duplicate de-
tection, but for many large-scale systems, binary perceptual
hashes are usually employed [19].

An adversarial image attack is an attack that “perturbs”
an image in such a way that some target classifier or detec-
tor fails when given the image as input [7]. These attacks
occur in either a white box setting, where an attacker has
full access to a model [25], or a gray- or black-box setting,
where the adversary has varying levels of access to the tar-
get model, either in terms of query access or some general
knowledge of the target model’s architecture [12]. The de-
sired failure mode can either be evasion [4], where an at-
tacker seeks to perturb an image by as little as possible so
that a classifier classifies the image as anything except its
true class. A more difficult form of attack is a targeted at-
tack, where the image is perturbed so that it is classified as
the desired target class. A still stronger outcome is a tar-
geted collision attack [28], where an image is perturbed so
that from the point of view of a model, the adversarial image
is identical to another target image.

In this work, we target image hashing methods in gen-
eral. Image hashes are typically computed in one of two
ways - either via a deep hashing algorithm [20, 35], where
the embeddings from the penultimate layer of a deep net-
work are encoded and binarized, or with what we denote as

a “shallow” hashing function, which uses deterministic im-
age operations to produce a fixed-length hash [15, 22, 23].
Previous work has focused on targeted or evasion attacks
for deep hashes [18, 34]. The targeted attacks in [3, 18]
explore poisoning attacks for deep hashing systems, but op-
timize for a general target class and not the stronger cri-
terion of an exact collision. Furthermore, for large scale
production systems shallow hashes are often used as they
contain far fewer parameters than a deep network and can
be quickly computed, even on a CPU. For greater applica-
bility, we experiment with both shallow and deep hashes,
and show that shallow hashes are just as vulnerable as deep
hashes to gradient-based adversarial attacks.

Finally, the specific attack scenario we simulate is a poi-
soning attack [10] where a bank of image hashes is unknow-
ingly polluted with an image designed to disrupt the du-
plicate image detection service. For instance, a bank may
contain images that are not allowed to be posted by a third
party, and any uploaded image is checked against this bank
and flagged if there is a match. An adversary can impercep-
tibly perturb an image that would normally be placed in this
bank, and all live instances of the benign image will then be
either incorrectly removed or flagged.

3. Attack methods
To perform a hash collision, one can modify a

source image xi so that it has exactly the same hash
as a target image yi, according to some hash function
h(x) = fn ◦ . . . ◦ f1(x), where each individual f i is a dis-
tinct step in the hashing process. Given the shorthand
definition f i(x) = f i ◦ . . . ◦ f1(x), the set of image
pairs that will have identical hashes is defined as C ={
(x, y) : f i(x) = f i(y), i ≤ n, x 6= y

}
. Thus given a tar-

get image y, our task is to find an attack image x such
that (x, y) ∈ C. As it is intractable to search this set in
a brute-force manner, we instead adopt a modified form of
the box-constrained optimization method of [31] to derive
a minimally perturbed image x + r ≈ y that minimizes a
particular hash distance.

A key observation regarding image hashing systems is
that, if at any point in the hashing pipeline there exists a col-
lision between two intermediate outputs produced by two
different images, then all successive steps will also pro-
duce collisions. Searching C does not restrict attacks to
only colliding the final output, but also permits optimiz-
ing earlier steps in the hashing pipeline. Secondly, hashing
functions by design are surjective (or onto). Many image
inputs are mapped to the same hash via a hashing function
h : Rm → {0, 1}k. It may be the case that semantically dis-
similar images have identical hashes. Because the overall
hashing function is surjective, then there must exist an in-
terior function f i that is also surjective, and sweeping over
the interior functions of a hashing algorithm may uncover a
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particularly susceptible weak point. Thus, a generalization
of the optimization method of [31] is given in Eq. 1, where
an additional minimization term is added to minimize the
distance of one or a set of interior functions I.

minimize
r

∑
i∈I
||f i(x+ r)− f i(y)||22 + c · ||r||22

subject to |h(x+ r)− h(y)| ≤ d
x+ r ∈ [0, 1]m

(1)

Since binarization is common to most image hashing
techniques, we can design a special-case surjective attack
that enables small perturbations to have a large effect on the
output hash. The last function fn in a hashing algorithm
is usually implemented as a step function over each bit j,
which creates discontinuities through which it is difficult
to backpropagate gradients. As shown in Eq. 2, we design
a hinge loss by replacing the step function with a sigmoid
that acts like a soft step (similar to [34], which uses a tanh
function) and contains useful gradients, especially around
zero. Empirically, using this objective produces high hash
collision rates.

k∑
j=0

max
(
0, |hj(y)− σ(fn−1j (x+ r))| − δ

)
(2)

Finally, we examine not only the typical deep hashing
methods already covered in some prior work, but a set of
“shallow” hashes that do not use deep networks and do not
contain learned components. Furthermore, we include im-
age pre-processing steps as part of the overall hashing func-
tion and include them in the gradient-based adversarial at-
tack optimization. Most adversarial attacks in the literature
operate on fixed-size images, so the resizing algorithm is
ignored in the optimization. However, image hashes are
sensitive to the resizing algorithm used, and some previ-
ous work has examined the behavior of general adversar-
ial attacks under different forms of resizing or compres-
sion [8, 26, 27, 29]. Accordingly, we directly target the
resize step as a potential attack point.

The specific shallow hashes we examined were vari-
ants of the methods described in [16], specifically aHash,
dHash, and pHash. The methods are available as an open
source Python package ImageHash1. For deep hashes,
we examined a variety of architectures developed over
the past decade, each pretrained on the ImageNet dataset:
AlexNet [17], ResNet [11], and EfficientNet [32]. Refer to
the appendix for more details regarding each hash.

4. Experiments
We performed a variety of white box, gray box, and

transfer attacks attacks against the aforementioned hashes.
1https://pypi.org/project/ImageHash/

Hash Top-1-acc Top-5-acc Top-10-acc Coll. rate Succ. rate L2 loss
ahash 256 0.611 0.622 0.628 0.002 1.000 0.032
dhash 256 0.617 0.628 0.632 0.000 0.970 0.022
phash 256 0.614 0.621 0.624 0.000 0.981 0.030
a.net 256 0.770 0.827 0.847 0.000 0.941 0.004
r.net18 256 0.868 0.913 0.926 0.000 1.000 0.001
r.net50 256 0.864 0.917 0.933 0.000 1.000 0.001
r.net101 256 0.869 0.920 0.936 0.000 1.000 0.001
e.net-b3 256 0.876 0.921 0.934 0.000 0.957 0.001
e.net-b5 256 0.838 0.891 0.908 0.000 1.000 0.001

Table 1. Baseline nearest-neighbor classification accuracy for all
256-bit hashes, as well as incidental collision rates, exact collision
attack success rates with the hinge loss, and the average L2 content
loss at the exact collision.

In the white box setting, we consider only an exact hash
collision as an attack “success.” Although duplicate image
detection systems usually use a small distance threshold for
finding “exact” matches, exact collisions allow an attacker
to avoid having to determine the match threshold through
repeated attacks. For gray and black box settings, because
these hash systems often use a detection threshold, we pro-
vide additional analysis on the attack success rates when
using a precision-tuned distance threshold greater than zero.
For each hash type and architecture, we pre-defined a set of
“split points” where a particular interior function was used
as an optimization objective as shown in Eq. 1. Only 256 bit
hash results are shown here, but results for 64 and 128 bit
hashes, further analysis of attack success rates across split
points, split points, and more qualitative results are provided
in the supplemental material.

Baselines: Prior to measuring our adversarial hash attack
success rates, we computed a set of baselines over each hash
to understand the performance of each under light noise and
perturbations. To compute this, we used a perturbed version
of the ImageNet validation set as probes, and performed
a nearest-neighbors lookup into the unperturbed validation
set using FAISS [13]. Furthermore, we used the original
training images as a set of distractors. The top-k accuracy
of each hash is shown in Table 1. Additionally, to verify that
our attacks are not measuring spurious successes, we com-
puted a baseline collision rate which measures how likely
it is for a random image to share the exact hash as another
image. For brevity, only 256-bit hashes are included in Ta-
ble 1, but full results are available in the supplemental ma-
terial. The maximum incidental collision rate was 0.039 for
the 64-bit version of aHash; most hashes besides the sim-
plistic aHash had a baseline collision rate less than 0.001.

White box attacks: In the white box setting, an attacker
has full access to a model or algorithm and any parameters
to that algorithm. To perform this set of white box attacks,
we divided the ImageNet validation set into two partitions
of 500 classes each, the first of which was used for hyper-
parameter tuning, and the second for measuring attack suc-
cess. The validation set was used as it contains class labels
that can be used to measure if semantically-similar images
are easier to collide. For each of the 1,000 random pairs and
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Figure 2. Deep gray box attacks - darker color corresponds to bet-
ter success. Vertical axis shows the hash targeted for optimization,
with higher bins in each box corresponding to earlier split points.
The horizontal axis shows the target hashes for the gray box attack.

1,000 class pairs, we saved the output white box adversarial
images for testing our approach’s gray and black box perfor-
mance. For each model and hash type, we optimized Eq. 1
using the Adam optimizer and the learning rates were deter-
mined via hyper-parameter tuning. The content loss weight
c was fixed at 0.001 for all experiments in order to maxi-
mize the chance of achieving a hash collision. As shown in
1, our attack approach was highly successful in achieving
exact collisions for both shallow and deep hashes.

Gray box/transfer attacks: In the gray box setting, an
attacker knows some information about the hashing algo-
rithm used. For instance, the adversary may know that a
pre-trained ResNet is used to extract primary feature em-
beddings, but they do not know the algorithm used to pro-
duce the final binary hash. To measure the efficacy of our
approach, we grouped the shallow hashes together, as well
as the deep models from the same architectural family, and
measured every gray box pair within these families. To
simulate a production image retrieval system, we measure
the success rate at a pre-computed ”exact match” distance
threshold. These thresholds were derived for each hash by
using the augmented images described in the baseline ex-
periments, and finding the distance such that the nearest
neighbor in the given hash space was an exact match with
precision 0.99. Then for any adversarial image/target image
pair, if their distance is less than this threshold, the attack is
marked as a success. Within each cell in Figs. 2 and 3, the
success rate is plotted, with higher values in each cell corre-
sponding to an earlier attack point for the adversarial hash.

Figure 3. Shallow gray box attacks, with same structure as Fig. 2.

As is evident in Fig. 2, our attack transfers well between
different hash functions that use similar architectures, and
transfers especially well if the same base architecture is
used, regardless of the hashing function appended to that
architecture. However, transferability decreases as deeper
split points are used. For shallow hashes, all three share
similar resizing functions, so it is a particularly suitable in-
terior surjective attack point for gray box attacks. Fig. 3
demonstrates that if an adversary were to only know the al-
gorithm used to perform a resize, and were able to produce
a collided resized image, the downstream hashing method
does not matter.

5. Mitigations and conclusions

Based on our comprehensive analysis, several conclu-
sions can be drawn. First, all attacks that have white box
access to a model are able to produce exact hash collisions
with minimal perturbations of the source image. Conse-
quently, it is necessary that the algorithm used in a produc-
tion system is not made public if one wishes to guarantee
the security of said system - otherwise the system is com-
pletely vulnerable to poisoning attacks. Second, we demon-
strate that our attack method is successful even in a gray box
setting, so one must withhold even general details about the
algorithm such as the training set or base model. A third ap-
proach is more practical than the above methods which rely
on “security by obscurity.” Transfer attacks between shal-
low and deep hashes were much less successful, so using
a combined shallow/deep hash may provide more security
as an adversarial attack must perturb an image to fool both
models that operate in an essentially orthogonal manner.
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