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Abstract

Despite numerous attempts sought to provide empirical
evidence of adversarial regularization outperforming sole
supervision, the theoretical understanding of such a phe-
nomenon remains elusive. In this study, we aim to re-
solve whether adversarial regularization indeed performs
better than sole supervision at a fundamental level. To
bring this insight to fruition, we study vanishing gradient
issue, asymptotic iteration complexity, sub-optimality gap,
and provable convergence in the context of sole supervi-
sion and adversarial regularization. While the main results
revolve around the central theme, the reported derivations
rely on different theoretic tools to maintain consistency with
existing literature. The key ingredient is a theoretical jus-
tification supported by empirical evidence of adversarial
acceleration in gradient descent. Also, motivated by a re-
cently introduced unit-wise capacity-based generalization
bound, we analyze the generalization error in an adversar-
ial framework.

1. Introduction

At a fundamental level, we study the role of adversarial
regularization in supervised learning. We intend to resolve
the mystery of why conditional generative adversarial net-
works accelerate gradient updates when compared with sole
supervision. In light of deeper understanding, we explore
several crucial properties pertaining to adversarial accelera-
tion.

Over the years several variants of gradient descent algo-
rithms have emerged. In various tasks, adaptive methods
including Adagrad [6], RMSProp [38], and ADAM [16]
perform better than classical gradient descent. Of partic-
ular interest, stochastic version of gradient descent, namely
SGD with momentum has enjoyed great success in neu-
ral network optimization. Its simplicity, superior perfor-
mance [42], and theoretical guarantees [2] often provide an
edge over other algorithms. This motivates us to choose
SGD as our primary learning algorithm [26, 29]. Despite

superior empirical performance by SGD, we observe van-
ishing gradient issue in near optimal region. This is mir-
rored by poor practical performance when compared with
adversarial regularization [4, 40, 21, 41, 44]. We identify
the root cause of this issue to be the primary objective func-
tion. Since these methods rely on some form of gradients
estimated from the supervised objective, the issue of vanish-
ing gradient inherently resides in the near optimal region.

In recent years, the research community has witnessed
pervasive use of Generative Adversarial Networks (GANs)
on a wide variety of complex tasks [13, 49, 30, 15]. Among
many applications, some require generation of a particular
sample subject to a conditional input. For this reason, there
has been a surge in designing conditional adversarial net-
works [25]. In visual object tracking via adversarial learn-
ing, Euclidean norm is used to regulate the generation pro-
cess so that the generated mask falls within a small neigh-
borhood of actual mask [36]. In photo-realistic image super
resolution, Euclidean or supremum norm is used to mini-
mize the distance between reconstructed and original im-
age [21, 41]. In medical image segmentation, multi-scale
L+-loss with adversarial regularization is shown to outper-
form sole supervision [44]. In medical image analysis, a 3d
conditional GAN along with L;-distance is used to super
resolve CT scan imagery [!8].

Furthermore, Isola et al. [13] use Lq-loss as a super-
vision signal and adversarial regularization as a continu-
ously evolving loss function. Because GANs can learn a
loss that adapts to data, they fairly solve multitude of tasks
that would otherwise require hand-engineered loss. Xian
et al. [43] use adversarial loss on top of pixel, style, and fea-
ture loss to restrict the generated images on a manifold of
real data. Prior works on this fall under the category of con-
ditional GAN where a composition of pixel and adversarial
loss is primarily optimized [25, 4, 40]. Karacan et al. [14]
use this technique to efficiently generate images of outdoor
scenes. Rout et al. [33] combine spatial and Laplacian spec-
tral channel attention in regularized adversarial learning to
synthesize high resolution images. Emami et al. [7] co-
alesce spatial attention with adversarial regularization and



feature map loss to perform image-to-image translation.

As per these prior works [44, 5, 12, 34, 32], it is un-
derstandable that supervised learning with adversarial regu-
larization boosts empirical performance. More importantly,
this behavior is consistent across a wide variety of tasks.
As much beneficial as this has been so far, to our knowl-
edge, the theoretical understanding still remains relatively
less explored. This paper aims to bridge the gap by provid-
ing theoretical justification and empirical evidence on the
role of adversarial regularization in supervised learning.

2. Preliminaries
2.0.1 Notations

Let X € R% and Y ¢ R%, where d, and d, denote input
and output dimensions, respectively. The empirical distri-
bution of X and Y are denoted by Px and Py. Given an
input z € X, f(0;x) : R% — R% is a neural network
with rectified linear unit (ReLU) activation, which is com-
mon for both supervised and adversarial learning. Here, 6
denotes the trainable parameters of the generator, f(6;.).
On the other hand, the discriminator, g(¢;.) has trainable
parameters collected by . The optimal values of these pa-
rameters are represented by 0* and ¢*. For g : R% — R,
Vg denotes its gradient and V2g denotes its Hessian. Given
a vector z, ||«|| represents its Euclidean norm. Given a ma-
trix M, || M| and || M| denote its spectral and Frobenius
norm, respectively.

Definition 1 (L-Lipschitz). A function f is L-Lipschitz if

Vo, V()] < L.
Definition 2 (3-Smoothness). A function f is 3-smooth if
Vo, V2 £(0)]| < 5.

2.0.2 Problem Setup

In sole supervision, the goal is to optimize the following:
argrneinE(m,y)NP (L(f(O;2);y)]. (D

In Wasserstein GAN (WGAN) + Gradient Penalty (GP), the
generator cost function is given by

argmin —E, o [g (¢ f (6;2))] 2)
and the discriminator cost function is given by,

argmin E;py [9 (5 f (0;2))] — Eyupy [9 (¥;9)]
3)
+ 6P Eanp, |([Vog (5 2)] — 1)) .

Here, Pz represents the distribution over samples along
the line joining samples from real and generator distribu-
tion. Unlike sole supervision, the mapping function fy(.)

in an augmented objective has access to feedback signals
from the discriminator. Thus, the optimization in super-
vised learning with adversarial regularization is given by

argmin B )p 1 (f(0;2);9) — g (3 f (0:2))]. - (4)

Here, P denotes the joint empirical distribution over X and
Y. The discriminator cost function remains identical to the
Wasserstein discriminator as given by equation (3).

3. Theoretical Analysis

This section states the assumptions and their justifica-
tions in the context of adversarial regularization. It is in-
tended to justify a multitude of tasks that owe the bene-
fits to adversarial training. The technical overview begins
with vanishing gradient issue in the near optimal region. It
then presents the main results of this paper. The bounds
may appear weak to some readers, but note that the goal of
this study is not to provide a tighter bound individually for
sole supervision and adversarial regularization. Rather, the
goal is to understand the role of adversarial regularization
in supervised learning — whether adversarial regularization
helps tighten the existing bounds in supervised learning lit-
erature. Thus, the emphasis is on providing a theoretical
justification to the practial success of supervised learning
with adversarial regularization.

3.1. Mitigating Vanishing Gradient

The primary assumptions are stated as following.
Assumption 1. The function f(0;x) is L-Lipschitz in 0.

Assumption 2. The loss function l(p;y), where p =
f(8;x), is B-smooth in p.

Assumption 1 is a mild requirement that is easily sat-
isfied in the near optimal region. Different from standard
smoothness in optimization, it is trivial to justify Assump-
tion 2 by relating it to a quadratic loss function'

Lemma 1. Ler Assumption 1 and Assumption 2 hold. If
|10 — 0| < e then va]E(z,y)Np [ (f(0; x),y)]H < L?fe.

Proof. Refer to Appendix C.1. O

Lemma 1 provides an upper bound on the expected gra-
dient over empirical distribution P in the near optimal re-
gion. As the intermediate iterates () move closer to the
optima (0%), i.e., ¢ — 0, the gradient norm vanishes in ex-
pectation. This essentially resonates with the intuitive un-
derstanding of gradient descent. From another perspective,
the issue of gradient descent inherently resides in the near

IPlease refer to Appendix D for numberical experiments confirming
these assumptions in practice.



optimal region’. We therefore ask a fundamental question:
can we attain faster convergence without having to loose
any empirical risk benefits? The following sections are in-
tended to shed light in this direction.

Lemma 2. Suppose Assumption 1 holds. For a dif-
ferentiable discriminator g(v;y), if |lg—g*] <
where g* = g(1*) denote optimal discriminator, then
[=VoEzrpy [g (¥ f (6;2))]]| < Lo.

Proof. Refer to Appendix C.2. O

Lemma 2 indicates that the expected gradient of purely
adversarial generator does not produce erroneous gradients
in the near optimal region, suggesting well behaved com-
posite empirical risk [44].

Theorem 1. Let us suppose Assumption 1 and As-
sumption 2 hold. If |0 —6*|| < € and ||g—g*| <
8, then ||VoE (4 yy~p [L(f(0;2);y) — g (¥ f (6;2))]| <
(L?Be + L9).

Proof. Refer to Appendix C.3. O

To focus more on the empirical success of adversarial
regularization, we study a simple convex-concave minimax
optimization problem. It will certainly be interesting to
borrow some ideas from the vast minimax optimization
literature in various other settings [22, 24]. According
to Theorem 1, the expected gradient of augmented ob-
jective does not vanish in the near optimal region, i.e.,
[|AG]| — Lo as e — 0. In the current setting, the estimated
gradients of [(f) and —g(f) at any instant during the
optimization process are positively correlated.  Thus,
the gradients of augmented objective is lower bounded
by [[VeE(wyyop [L(F(6;2);9) — g (05 f (6;2))]] >
HVQIE(WI)NP [l (f(@,x),y)]” The upper and lower
bounds of the intermediate iterates justify non-vanishing
gradient in the near optimal region. It is important to heed
the fact that supervised learning with adversarial regu-
larization sets a more stringent criterion, which requires
convergence of both primary and secondary objectives. In
a smooth-convex-concave setting, which is not necessarily
true in the deep learning paradigm, ¢ — 0 promotes the
reduction of ¢ that makes the generator close to optimal
generator. Although this results in vanishing gradients,
the stringent convergence criterion would have already
accelerated gradient updates in the augmented objective.
This will be verified in the following sections. Having
mitigated the vanishing gradient issue, it seems natural
to wonder whether adversarial regularization improves
iteration complexity.

2This issue of vanishing gradient is different from the vanishing gradi-
ent pheonomenon in the initial layers of a very deep feedforward network.
It exists even after residual skip connections that solves the latter.

3.2. Asymptotic Iteration Complexity

In this section, we analyze global iteration complexity of
sole supervision and the augmented objective[45, 3]. The
analysis is restricted to a deterministic setting. For a se-
quence of parameters {6y}, ., the complexity of a function
1(0) is defined as

Te ({0} pen - 1) =inf {k € N | [|[VI(6p)]| < €}.

For a given initialization 6y, risk function [ and algorithm
Ay, where ¢ denotes hyperparameters of training algorithm,
such as learning rate and momentum coefficient, A, [I, 6]
denotes the sequence of iterates generated during training.
We compute iteration complexity of an algorithm class pa-
rameterized by p hyperparameters, A = {A4} scre ON A
function class, .Z as

N (A, L €)= inf sup Te (Ag (1,00 ,1).

AsCA gy {Rhxdz RV XM Y 1€ 2
We derive asymptotic bounds under a less restrictive set-
ting as introduced by Zhang et al. [45]. The new condi-
tion is weaker than commonly used Lipschitz smoothness
assumption. Under this condition, Zhang et al. [45] aim
to resolve the mystery of why adaptive gradient methods
converge faster. We use this theoretical tool to study the
asymptotic convergence bounds. To circumvent tractability
issues in non-convex optimization, we follow the common
practice of seeking an e-stationary point, i.e., || VI (9)|| < e.
We start by analyzing the iteration complexity of gradient
descent with fixed step size. In this regard, we build upon
the assumptions made in [45]. To put more succinctly, let
us recall the assumptions.

Assumption 3. The loss [ is lower bounded by I* > —oc.
Assumption 4. The function is twice differentiable.

Assumption 5 ((Lg, L1)-Smoothness). The function is
(Lo, L1)-smooth, i.e., there exist positive constants Lo and
Ly such that ||V21(0)|| < Lo + L1 | VL (8)]|.

Theorem 2. Suppose the functions in £ satisfy As-
sumption 3, 4 and 5. Given ¢ > 0, the itera-
tion complexity in sole supervision is upper bounded by

0 ((l(eo>—l*>(Lo+L1L2ﬁe)> '

62
Proof. Refer to Appendix C.4. O

Corollary 1. Using first order Taylor series, the upper

bound in Theorem 2 becomes O (1(9212—#> .

Proof. Refer to Appendix C.5. O



Assumption 6 (Existence of useful gradients). For arbi-
trarily small { > 0, the norm of the gradients of the discrim-
inator is lower bounded by (, i.e., (s f (6;2))] > ¢.

Assumption 6 requires the discriminator to provide use-
ful gradients until convergence. It is a valid assumption in
minimax optimization problems. Also, it is trivial to prove
this in the inner maximization loop under concave setting.
In other words, the stated assumptions are mild and derived
from prior analyses for the purpose of maintaining consis-
tency with existing literature. Next, we analyze the global
iteration complexity in the adversarial setting.

Theorem 3. Suppose the functions in £ satisfy Assump-

tion 3, 4 and 5. Given Assumption 6 holds, ¢ > 0 and
§ < \/f

the iteration complexity in adversarial regular-
(U(80)—" )(L0+L1L25e)>

ization is upper bounded by O < P vy 7

Proof. Refer to Appendix C.6. O

Corollary 2. Using first order Taylor series, the upper

bound in Theorem 3 becomes O (ﬁfjﬁlﬁg) .

Proof. Refer to Appendix C.7. O

Since 2¢¢ — L26%2 > 0, the augmented objective has
a tighter global iteration complexity compared to sole su-
pervision. In a simplified setup, one can easily verify this
hypothesis by using first order Taylor’s approximation as
given by Corollary 1 and 2. In this case, h(e > 0 ensures
tighter iteration complexity bound. This result is signiﬁcant
because it improves the convergence rates from O ( ) to

() (W) Notice that for a too strong discriminator, As-

sumption 6 does not hold. For a too weak discriminator,
llg — g*|l < & does not hold when ¢ is arbitrarily small.
In these cases, the generator does not receive useful gra-
dients from the discriminator to undergo accelerated train-
ing. However, for a sufficiently trained discriminator, i.e.,
lg—g*ll <6< @, adversarial acceleration is guaran-
teed. Notably, the empirical risk and iteration complexity
benefit from this provided the discriminator and the genera-
tor are trained alternatively as typically followed in practice.

3.3. Sub-Optimality Gap

Here, we analyze continuous time gradient flow. The
sub-optimality gap of the generator and the discriminator
are defined by x(t) = &(0(t)) = 1(6(¢)) — 1 (6*) and
w(t) = w(0(¢t)) == g(0*) — g (6(t)), respectively. In the
adversarial setting, ( ) is a convex function, and ¢(.) is a
concave function. For clarity, we first analyze the gradient
flow in sole supervision using common theoretic tools and
then extend this analysis to the augmented objective.

Theorem 4. In purely supervised learning, the sub-
optimality gap at the average over all iterates in a trajectory

of T time steps is upper bounded by O (M) .

Proof. Refer to Appendix C.8. O

Theorem 5. In supervised learning with adversarial reg-
ularization, the sub-optimality gap at the average over all
iterates in a trajectory of 'T' time steps is upper bounded by

16(0) — 67| 1/T
O ( 5T T\ 7 ; O(t)dt | | .
Proof. Refer to Appendix C.9. O

According to Theorem 4 and 5, the distance to op-
timal solution decreases rapidly in the augmented objec-
tive when compared with the supervised objective. Since
the sub-optimality gap is a non-negative quantity and
7r (% S o(t)dt
tighter sub-optimality gap. The tightness is controlled by
the sub-optimality gap of the adversary, 7(.) at the average
over all iterates in the same trajectory. It is worth mention-
ing that the sub-optimality gap in the adversarial setting is
at least as good as sole supervision. Also, these theorems do
not require all the iterates to be within the tiny landscape of
optimal empirical risk. The genericness of these theorems
provides further evidence of empirical risk benefits in the
augmented objective.

) > 0, the augmented objective has a

4. Concluding Remarks

In this study, we investigated the slow convergence prop-
erty of sole supervision in the near optimal region, and how
adversarial regularization helped circumvent this issue. Fur-
ther, we explored several crucial properties at this juncture
of understanding the role of adversarial regularization in su-
pervised learning. Particularly intriguing was the generic-
ness of these theorems around the central theme. To make
a fair assessment, standard theoretic tools were employed
in all the theorems. From theoretical perspective, the iter-
ation complexity, sub-optimality gap, convergence guaran-
tee, and the analysis of generalization error provided further
insights to the empirical findings. While the sub-optimality
gap proved tighter empirical risk, the iteration complexity
justified adversarial acceleration. Moreover, it was shown
that the learning algorithm would converge even with adver-
sarial regularization. Although we found the improvement
in empirical risk to be marginal on some datasets, the theo-
retical analysis justified accelerated training in conditional
generative modeling, which was one of the primary subjects
of investigation.
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