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Abstract

Probably the most popular yet controversial explanation
for adversarial examples is the hypothesis on the linear na-
ture of modern DNNs. Initially supported by the FGSM-
attack this has been challenged by prior works from various
perspectives. Further aligning with the linearity hypothesis,
a recent work shows that backpropagating linearly (LinBP)
improves the transferability of adversarial examples. One
widely recognized issue of the commonly used ReLU ac-
tivation function is that its derivative is non-continuous.
We conjecture that the reason LinBP improves the transfer-
ability is mainly due to a continuous approximation for the
ReLU in the backward pass. In other words, backpropagat-
ing continuously might be sufficient for improving transfer-
ability. To this end, we propose ConBP that adopts a smooth
yet non-linear gradient approximation. Our ConBP consis-
tently achieves equivalent or superior performance than the
recently proposed LinBP, suggesting the core source of im-
proved transferability lies in the approximation derivative
being smooth, regardless of being linear or not. Our work
highlights that any new evidence for either supporting or
refuting the linearity hypothesis deserves a closer look. As
a byproduct, our investigation also results in a new variant
backpropagation method for improving the transferability
of adversarial examples.

1. Introduction
Deep neural networks (DNNs) have been widely known

to be vulnerable to adversarial examples [8, 22]. One in-
triguing phenomenon of adversarial examples is their trans-
ferable property, i.e. adversarial examples generated on a
certain model can transfer well to another unseen black-
model [5, 6, 27]. Numerous works have attempted to ex-
plain the existence of adversarial examples as well as their
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transferability [8, 11, 13, 24]. One of the most famous yet
controversial explanations is the linear nature hypothesis of
modern DNNs [8]. The linear hypothesis has been mainly
supported by the success of the widely used fast gradi-
ent sign method (FGSM) [8]. However, follow-up works
have refuted this linear hypothesis from various perspec-
tives [21, 24].

One recent work [9] revisits this hypothesis and demon-
strates that backpropagating linearly (LinBP), can non-
trivially improve the transferability of the adversarial ex-
amples. The authors ascribe the improved transferability of
LinBP to the linear nature of modern DNNs, thus consti-
tuting another strong empirical evidence for supporting the
controversial linearity hypothesis. Since this controversial
hypothesis is highly relevant for understanding the adver-
sarial examples, we argue that any new evidence that either
supports or refutes it deserves a closer look for not mis-
leading the community in the wrong direction of exploring
adversarial examples. To this end, our work revisits this re-
cent evidence supported by their LinBP. LinBP disentangles
the ReLU in the forward and backward pass. Specifically,
they calculate the ReLU as normal in the forward pass but
treats it as an identity mapping with a constant derivative in
the backward pass. Note that the derivatives of ReLU are
non-continuous at zero, and this discontinuity might result
in unstable gradients near zero and consequently decreases
the gradient quality and transferability. Instead, the iden-
tity mapping has a continuous derivative, which motivates
a conjecture that the continuous property of the approxima-
tion gradient might be the cause for the improved transfer-
ability of LinBP. The core issue this work addresses is what
property of the adopted approximation derivative boosts the
transferability of adversarial examples. LinBP [9] attributes
it to the linear property, while we conjecture the primary
cause might be the continuous property, regardless of being
linear or not.

To this end, we investigate whether backpropagating
smoothly but non-linearly improves transferability. Analo-
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gous to LinBP, we term our proposed approach ConBP. We
find that ConBP consistently achieves comparable or supe-
rior transferability compared with the existing LinBP. Our
findings empirically collaborate our conjecture that the con-
tinuous property of the approximation derivative is one key
factor improving transferability. In other words, the success
of LinBP for improving transferability might not constitute
strong evidence for supporting the famous yet controversial
linear hypothesis. Our investigation highlights the necessity
of providing a closer look at any new evidence for support-
ing or refuting the linearity hypothesis. As a by-product
of our investigation, our investigation also leads to a new
backpropagation variant for improving transferability.

2. Background and Related work
White-box attack. Suppose we are given a classifier

f(x) : X → Y which predicts the label of a sample.
The classifier f(x) is pretrained on a dataset D of samples
(x, y), x ∈ Rd and their corresponding ground-truth label
y ∈ {1, . . . , k}. Assuming the classifier is well trained, and
usually f(x) = y and adversarial attack seeks a small per-
turbation δ that fools the classifier, i.e. f(xadv) 6= y, where
xadv = x + δ. In the targeted setting, the new prediction
needs to be a predefined target class yt, i.e. f(xadv) = yt.
The de facto standard approaches maximize the prediction
loss e.g. cross-entropy loss L with an additional constraint
on the perturbation lp norm as:

argmax
δ

L(f(x+ δ), y), s.t. ||δ||∞ ≤ ε, (1)

Inspired by their linear hypothesis, Goodfellow et al. pro-
posed FGSM for simply calculating the perturbation as
ε · sign(∇xL(xadvt , y)). Despite its efficiency, FGSM often
suffers from a low attack success rate especially when the ε
is small. I-FGSM [14] and PGD [16] are iterative variants
of FGSM that result in a stronger attack. Note that the core
difference between I-FGSM and PGD lies in whether to ini-
tialize the initial values with random perturbations. PGD
with the random initialization can be stronger given multi-
ple trials for the white-box attack. Another variant of white-
box attack attempts to minimize the perturbation magnitude
and two famous representative ones are DeepFool [17] and
CW attack [2].

Black-box attack. One intriguing property of adversar-
ial examples is that they are transferable, which facilitates
the transfer-based black-box attack. Another query-based
variant of black-box attack also exists and typically requires
numerous queries to the black-box model [1, 3, 4, 7, 18, 20,
28]. Along this direction, transferability has also been ex-
ploited for reducing the number of queries. As the core
of most black-box methods, adversarial transferability has
attracted significant attention since [8] attributes it to the
linear nature of DNNs. Compared with FGSM, I-FGSM

constitutes a stronger white-box attack but at the cost of
lower transferability. Ensembling multiple source models
has been found in [15] to boost transferability. Processing
the inputs or the gradients with input diversity [27], gradi-
ent momentum [5], smoothing kernel [6] has been found
beneficial for transferability enhancement. Optimizing the
loss on the feature level is found in [10, 12, 29] to boost the
transferability. It has been shown in [9, 25] that disentan-
gling some components in the forward and backward pass
is beneficial for improving the performance. Specifically,
[25] shows that using more gradients from the skip connec-
tions rather than the residual modules in the backward pass
results in more transferable adversarial examples, and [9]
shows that LinBP, i.e. discarding some non-linear functions
in the backward pass, improves transferability. Our work is
mainly inspired by LinBP but differs in replacing the linear
derivatives with nonlinear but smooth approximations. A
similar approach has also been investigated in a concurrent
work for adversarial training [26], while ours focuses on its
influence on transferability.

3. Motivation
Revisiting the linear hypothesis. Since the discovery

of adversarial examples, numerous works have attempted
explanation from various perspectives. The probably most
famous yet controversial one is the linear nature hypothesis
first introduced in [8]. This hypothesis is in contrast to the
earlier prevailing belief that the non-linearity of DNNs is the
cause. This linearity hypothesis is also partially supported
by [13] that studied adversarial examples in the context of
dense associate memory models. However, this hypothe-
sis has also been challenged by multiple follow-up works.
For example, Tanay and Griffin [24] provided an alterna-
tive boundary tilting perspective on the cause while claim-
ing the linearity hypothesis is “unconvincing”. This is also
collaborated by the finding that a shallow and thus more
linear classifier is just as vulnerable to the adversarial ex-
amples as their much deeper counterpart [23]. A relatively
more recent work [21] discovered a strong correlation be-
tween robustness and empirical linearity of a network, mo-
tivating the authors to “reject” the linearity hypothesis. A
similar finding has also been reported in [19]. Despite these
counter-evidences, one recent work still builds their expla-
nation on the linearity hypothesis and proposed LinBP for
improving the transferability. Specifically, LinBP discards
the non-linear functions in the backward pass for calculat-
ing the gradient, thus is considered as linear backpropa-
gation, i.e. LinBP. This intriguing phenomenon constitutes
new non-trivial evidence for supporting the long-existing
controversial hypothesis. Since it is highly relevant to ex-
plain the adversarial examples, any new evidence that ei-
ther supports or refutes the linearity hypothesis deserves a
closer look. To this end, our work revisits why LinBP im-



Table 1. Success rates of transfer-based attacks on ImageNet using I-FGSM with `∞ constraint under the untargeted setting. The source
model is a VGG19 and the symbol * indicates that the victim model is the same as the source model. Average is obtained from models
different from the source.

Dataset Method #layers VGG* (2016) ResNet (2015) Inception v3 (2016) DenseNet (2017) MobileNet v2 (2018) PNASNet (2018) SENet (2018) Average

ImageNet I-FGSM N.A. 100.00% 40.00% 28.00% 38.00% 54.00% 28.00% 38.00% 37.66%

LinBP+I-FGSM 1 100.00% 45.00% 25.00% 40.00% 56.00% 30.00% 35.00% 38.5%
3 100.00% 56.00% 33.00% 50.00% 65.00% 31.00% 45.00% 46.67%
5 100.00% 49.00% 31.00% 44.00% 57.00% 33.00% 39.00% 42.16%
7 93.00% 51.00% 34.00% 52.00% 56.00% 30.00% 35.00% 43.00%
9 92.00% 24.00% 24.00% 23.00% 40.00% 13.00% 18.00% 23.68%

11 77.00% 23.00% 22.00% 30.00% 38.00% 15.00% 17.00% 24.68%
13 79.00% 25.00% 20.00% 15.00% 29.00% 5.00% 13.00% 17.83%
15 66.00% 18.00% 18.00% 16.00% 32.00% 8.00% 13.00% 17.5%

ConBP+I-FGSM
1 100.00% 41.00% 25.00% 42.00% 53.00% 29.00% 32.00% 37.00%
3 100.00% 46.00% 30.00% 47.00% 59.00% 34.00% 34.00% 41.64%
5 100.00% 48.00% 33.00% 48.00% 58.00% 35.00% 36.00% 43.0%
7 100.00% 50.00% 31.00% 52.00% 63.00% 38.00% 41.00% 45.83%
9 100.00% 48.00% 31.00% 52.00% 63.00% 40.00% 44.00% 46.33%

11 100.00% 49.00% 28.00% 54.00% 63.00% 38.00% 45.00% 46.14%
13 100.00% 56.00% 34.00% 56.00% 67.00% 41.00% 45.00% 49.83%
15 100.00% 60.00% 37.00% 63.00% 73.00% 46.00% 49.00% 54.64%

Table 2. Success rates of transfer-based attacks on ImageNet using I-FGSM with `∞ constraint under the untargeted setting. Note that
renormalization is Not applied. The source model is a ResNet-50 and the symbol * indicates that the victim model is the same as the
source model. Average is obtained from models different from the source.

Dataset Method ε ResNet* (2016) Inception v3 (2016) DenseNet (2017) MobileNet v2 (2018) PNASNet (2018) SENet (2018) Average

ImageNet

I-FGSM
0.1 100.00% 48.00% 73.00% 68.00% 43.00% 54.00% 57.2%

0.05 100.00% 27.00% 54.00% 54.00% 25.00% 31.00% 38.2%
0.03 100.00% 21.00% 47.00% 46.00% 21.00% 25.00% 32.00%

LinBP+I-FGSM(†)
0.1 100.00% 60.00% 82.00% 83.00% 62.00% 77.00% 72.8%

0.05 98.00% 37.00% 59.00% 59.00% 32.00% 42.00% 45.8%
0.03 94.00% 26.00% 43.00% 45.00% 16.00% 25.00% 31.00%

ConBP + I-FGSM
0.1 100.00% 85.00% 96.00% 97.00% 87.00% 93.00% 91.6%

0.05 100.00% 62.00% 89.00% 84.00% 65.00% 76.00% 75.2%
0.03 100.00% 47.00% 76.00% 73.00% 48.00% 54.00% 59.6%

proves transferability. One widely known issue of ReLU
in the backpropagation is its non-continuous derivative at
zero (See Figure 1). By discarding the ReLU in the back-
ward propagation, LinBP in essence alleviates this discon-
tinuity issue with a linear thus continuous derivative. This
motivates a conjecture that the improved transferability of
LinBP lies in the continuous property of the approximation
derivative.

Figure 1. Activation functions (left) and their derivatives (right).

ConBP: Backpropagating Smoothly. Note that the lin-
ear property is one special form of the continuous prop-
erty. Thus, to investigate whether the continuous deriva-
tive property is sufficient for improving transferability, we

adopt a continuous yet non-linear gradient approximation
for the ReLU activation. Since it backpropagates continu-
ously, analogous to LinBP we term it ConBP. Specifically,
ConBP adopts the ReLU function as normal in the forward
pass but uses the continuous approximation of a certain non-
linear activation function, e.g. softplus function. In essence,
both LinBP and ConBP disentangle the ReLU in the for-
ward and backward pass and their only difference lies in that
the adopted gradient approximation in ConBP is continuous
but not necessarily linear. An astute reader can quickly no-
tice that LinBP can be seen as a special case of our ConBP,
however, ConBP generally adopts a non-linear gradient ap-
proximation unless specified. If ConBP performs inferiorly
against LinBP or does not improve the transferability at all,
the improved transferability of LinBP should be, at least
partially, attributed to the adopted gradient being linear in-
stead of just being smooth, i.e. supporting the above men-
tioned linear nature hypothesis. Otherwise, it should be as-
cribed to the adopted alternative gradient being continuous,
regardless of being linear or not.



Table 3. Success rates of transfer-based attacks on ImageNet using I-FGSM with `∞ constraint under the untargeted setting. Note that
renormalization is applied. The source model is a ResNet-50 and the symbol * indicates that the victim model is the same as the source
model. Average is obtained from models different from the source.

Dataset Method ε ResNet* (2016) Inception v3 (2016) DenseNet (2017) MobileNet v2 (2018) PNASNet (2018) SENet (2018) Average

ImageNet

I-FGSM
0.1 100.00% 48.00% 73.00% 68.00% 43.00% 54.00% 57.2%
0.05 100.00% 27.00% 54.00% 54.00% 25.00% 31.00% 38.2%
0.03 100.00% 21.00% 47.00% 46.00% 21.00% 25.00% 32.00%

LinBP+I-FGSM(†)
0.1 100.00% 88.00% 98.00% 97.00% 90.00% 94.00% 93.4%
0.05 100.00% 60.00% 84.00% 89.00% 61.00% 73.00% 73.4%
0.03 100.00% 49.00% 67.00% 73.00% 43.00% 50.00% 56.4%

ConBP + I-FGSM
0.1 100.00% 91.00% 99.00% 99.00% 97.00% 98.00% 96.8%
0.05 100.00% 69.00% 94.00% 89.00% 78.00% 84.00% 82.4%
0.03 100.00% 49.00% 82.00% 77.00% 58.00% 66.00% 66.4%

Table 4. Success rates of combined methods on ImageNet. The source model is a ResNet-50 and the symbol * indicates that the victim
model is the same as the source model. Average is obtained from models different from the source.

Dataset Method ε ResNet* (2016) Inception v3 (2016) DenseNet (2017) MobileNet v2 (2018) PNASNet (2018) SENet (2018) Average

ImageNet

ILA+I-FGSM
0.1 100.00% 86.28% 97.14% 97.48% 89.62% 95.28% 93.16%

0.05 100.00% 56.00% 80.00% 81.00% 60.00% 66.00% 68.6%
0.03 100.00% 41.00% 68.00% 65.00% 41.00% 54.00% 53.8%

LinBP+I-FGSM+ILA
0.1 100.00% 97.00% 100.00% 99.00% 97.00% 98.00% 98.2%

0.05 100.00% 74.00% 94.00% 92.00% 72.00% 87.00% 83.8%
0.03 100.00% 51.00% 73.00% 76.00% 51.00% 62.00% 62.6%

ConBP+I-FGSM+ILA
0.1 100.00% 98.00% 100.00% 100.00% 97.00% 98.00% 98.6%

0.05 100.00% 79.00% 92.00% 94.00% 80.00% 86.00% 86.2%
0.03 100.00% 55.00% 83.00% 80.00% 55.00% 70.00% 68.6%

4. Experiments

Following prior arts on transferability, we adopt Ima-
geNet as the dataset for comparing ConBP and LinBP. As
suggested in [9], applying LinBP to ResNet requires ad-
ditional re-normalization of gradients. To exclude the in-
fluence of re-normalization, we first compare their perfor-
mance on a famous VGG architecture with batch normaliza-
tion. Not losing generality, we adopt the continuous deriva-
tive of the widely known softplus function in the backward
pass for alleviating the non-continuous derivative issue in
the backward pass. Another variant of softplus function is
parametric softplus that can control the shape of the result-
ing derivative with a parameter β. With an infinitely large
β, its derivative approaches that of ReLU, and on the con-
trary an infinitely small derivative β leads to a constant, thus
linear, derivative. Note that LinBP has no additional hyper-
parameter for making it flexible. Following normalization
LinBP [9], we apply ConBP only to some ReLUs in the lat-
ter part of the DNN. With VGG19 as the source model, the
results are shown in Table 1 with β in ConBP set to 0.5. We
observe that applying LinBP to a few (up to 7) ReLUs in the
network indeed improves the transferability, however, ap-
plying it to all ReLUs decreases the transferability. ConBP
outperforms LinBP for most cases, especially when applied
to more ReLUs. Our result suggests that the improved trans-
ferability stems from the continuous approximation of the

gradient, regardless of being linear or not.
We further compare LinBP and ConBP in the ResNet.

Here, we perform the comparison in two setups: (1) without
re-normalization (see Table 2) and (2) with re-normalization
(see Table 3). The results suggest that in both cases, our
ConBP outperforms LinBP by a large margin. We further
report the results combined with ILA [10] in Table 4. Our
ConBP also outperforms LinBP in this setup.

5. Conclusion

The linear nature of DNNs is often hypothesized to ex-
plain the existence of adversarial examples and their trans-
ferability property. One recent work shows that LinBP im-
proves transferability, constituting new evidence for sup-
porting this rather controversial hypothesis. This work pro-
poses ConBP based on which we discover that continu-
ous derivative approximation for the gradient is sufficient
enough for improving the transferability. Our extensive ex-
periments show that regardless of being linear or not, ap-
proximating the ReLU derivative with a continuous deriva-
tive consistently improves the transferability and overall
outperforms linear approximation. Thus, our finding clearly
shows that the success of LinBP improving the transferabil-
ity should not be attributed to the linearity hypothesis. As a
byproduct, our investigation also leads to a new backpropa-
gation method for improving transferability.
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