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Abstract

Convolutional Neural Networks (CNNs) have become
the de facto gold standard in computer vision applications
for several years. However, new model architectures have
recently been proposed challenging the status quo. The Vi-
sion Transformer (ViT) relies solely on attention modules,
while the Mixer architecture substitutes the self-attention
modules with Multi-Layer Perceptrons (MLPs). Despite
their great success, CNNs have been shown vulnerable to
adversarial examples. This work sets out to investigate the
adversarial vulnerability of the recently introduced ViT and
MLP-Mixer architectures and compare their performance
with CNNs. Our results on white-box and black-box attacks
suggest that ViT and MLP-Mixer architectures are more ro-
bust to adversarial examples. Using a toy example, we also
provide empirical evidence that the lower adversarial ro-
bustness of CNNs can be attributed to their shift-invariant
property. With a frequency study, we further analyze the
distribution of frequencies learned from different model ar-
chitectures.

1. Introduction

Convolutional Neural Networks (CNNs) [24] have been
the gold standard architecture in computer vision. In
Natural Language Processing (NLP), however, attention-
based transformers are the dominant go-to model archi-
tecture [10, 34, 35]. Various attempts have been made
to apply such transformer architectures to computer vision
tasks [7, 33, 36, 6]. A breakthrough moment was achieved
with the advent of the Vision Transformer (ViT) [1 1], pre-
senting a transformer architecture achieving comparable
performance to state-of-the-art CNN architectures. Re-
cently, another alternative model architecture has been pre-
sented competing with CNN and ViT. The MLP-Mixer ar-
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chitecture, which does not rely on convolutions or self-
attention, has been proposed in [43].

Despite the success of CNNs, they remain vulnerable to
adversarial perturbations [4 1, 13], small input perturbations
causing the CNN to misclassify a sample. Due to the rather
recent introduction of the ViT and Mixer architecture, the
adversarial vulnerability of these novel architectures has not
been well studied yet. This work sets out to explore and an-
alyze the adversarial vulnerability of ViT and Mixer archi-
tectures and compare the findings against the CNN models.
Therefore, previously proven attacks on CNN architectures
are used. Specifically, first, the performance of the different
architectures is compared under the white-box attack, where
an adversary has full knowledge of the model parameters
to attack. We find that overall, ViT and Mixer (especially
ViT) architectures exhibit greater robustness against adver-
sarial examples than CNNs. We further compare their ro-
bustness under both query-based and transfer-based black-
box attacks. In both cases, we observe the same trend that
among the three explored architectures, ViT is the most ro-
bust architecture while CNN is the least robust.

To facilitate the understanding of why CNN is more vul-
nerable, we design a toy task of binary classification where
each class is only represented by a single image. The
image from each class has either a vertical or horizontal
black stripe in the middle. We find that CNN yields ad-
versarial stripes all over the images, while an FC network
mainly attacks the stripe in the middle. This observation
indicates that the vulnerability of CNN can be partially at-
tributed to the fact that CNN, which exploits local connec-
tions and shared weights by convolving kernels, has a shift-
invariance [56, 25]. Finally, we attempt to provide an analy-
sis from the perspective of frequency, investigating whether
the different model architectures are biased toward learn-
ing more high-frequency or low-frequency features. We
find that the ViT seems to learn more low-frequency fea-
tures, while the CNN is biased towards high-frequency fea-
tures. The high-frequency and low-frequency features are



commonly considered to be more non-robust and robust, re-
spectively [47]; therefore, ViT which is more reliant on the
robust (low-frequency) features, tends to be more robust.

2. Related Work

Vision Transformers. In Natural Language Process-
ing (NLP) Transformers [45], which are solely based on
the attention mechanisms, are the predominant model ar-
chitecture [10, 34, 35]. While CNNs have been the de
facto standard in deep learning for computer vision, also
the application of transformers has been explored for vi-
sion tasks [7, 33, 36, 6]. Recently, the Vision Transformer
(ViT) [11] was introduced, demonstrating that transform-
ers can achieve state-of-the-art performance, by sequenc-
ing the images into patches and pre-training the model
on large amounts of data. To address the data issue,
DeiT [44] introduced a teacher-student strategy specific to
transformers and trained a transformer architecture only
on the ImageNet-1K dataset. Concurrently, the T2T-ViT
had been proposed [51] introducing an advanced Tokens-
to-Tokens strategy. Further works are attempting to extend
the ViT architecture to increase the efficiency and perfor-
mance of transformer architectures [8, 14, 27, 48]. ViTs
have further been explored beyond the task of image classi-
fication [46, 5, 21, 32, 17].

MLP-Mixer. Tolstikhin et al. [43] challenge the status-
quo of convolutions and attention in current computer vi-
sion models and proposes MLP-Mixer, a pure Multi-Layer
Perceptron (MLP)-based architecture. Pre-trained on large
datasets, MLP-Mixer achieves comparable performance
with ViT. The main idea behind the Mixer architecture is
to separate the per-location operations and cross-location
operations, which are both realized through MLPs. Addi-
tionally, the Mixer architecture relies on several advances
in CNNs over the past years, such as skip-connections [16],
dropout [40], layer norm [ 1], etc.

Robustness. CNNs are commonly known to be vul-
nerable to adversarial examples [41, 13, 23], which has
prompted numerous studies on both image-dependent [13,

, 4, 28, 38] and universal attacks [29, 31, 52, 53, 2, 55].
The vulnerability of transformers in the context of NLP
tasks has also been investigated [19, 22, 39, 18, 26, 12, 15].

In this work we set out to investigate and compare the
ViT and Mixer architecture from an adversarial robustness
standpoint with existing attack methods with a comparison
against CNNs.

3. Methodology

Models and Dataset. In our experiments, we mainly
compare the ViT [1 1] models, MLP-Mixer [43] and ResNet
architectures [16]. For the ViT models we consider ViT-
B/16 and ViT-L/16, where B and L stand for “base” and

“large”, respectively, while 16 indicates the patch size.
The considered ViT models were pre-trained on ImageNet-
21K and fine-tuned on ImageNet-1K [9]. Corresponding
to the ViT models, we also investigated Mixer-B/16 and
Mixer-L/16 [43], except that these models were directly
trained on the ImageNet-1K without additional pre-training.
We further consider the ResNet-18 and ResNet-50 [16] ar-
chitectures trained on ImageNet-1K as well as the semi-
supervised (SSL) variant [49], which is pre-trained on a
subset of unlabeled YFCC100M [42] public image dataset
and fine-tuned with the ImageNet-1K, and the semi-weakly
supervised (SWSL) variant [49] which are pre-trained on
940 million public images with 1.5K hashtags matching
with 1,000 ImageNet-1K synsets, followed by fine-tuning
on ImageNet-1K dataset.

To evaluate adversarial attacks, we evaluate different ad-
versarial attacks in the untargeted setting on an ImageNet-
compatible dataset (composed of 1,000 images in 430
classes). This dataset was originally introduced in the
NeurIPS 2017 adversarial challenge'.

4. Experiment Results
4.1. Robustness Against White-Box Attacks

We first investigate the robustness under white-box at-
tacks. Particularly, we deploy PGD [28] and FGSM [13].
For both attacks we consider e = {d/255 | d € {0.1, 0.3,
0.5, 1, 3}} for images in range [0, 1]. For the PGD attack,
we set the number of iterations to 20 and keep the other pa-
rameters as the default settings of Foolbox [37]. For these
two attacks, we report the attack success rate (ASR), mean-
ing the percentage of samples which were classified differ-
ently from the ground-truth class. Additionally, we eval-
uate the models on the ¢5-variants of the C&W attack [4]
and DeepFool [30]. These two attacks have the objective
to minimize the perturbation magnitude given the ASR of
100%. Hence, we report the £5-norm of the adversarial per-
turbation and the results are available in Table 1.

Overall a trend can be observed that compared with CNN
architecture, the ViT and Mixer models have a lower attack
success rate, suggesting they are more robust than CNN ar-
chitectures. This is further confirmed by finding that CNN
requires a relatively lower £3-norm for the C&W and Deep-
Fool attacks. One exception to this observation is the Mixer
model, which appears to exhibit increased vulnerability to
very small perturbations, being as vulnerable as the CNN
models for an e = 0.1.

4.2. Robustness Against Black-Box Attacks

For the black-box attacks, we evaluate and compare their
robustness in two common setups: query-based black-box

Ihttps://github.com/rwightman/pytorch-nips2017-
adversarial
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Table 1: White-box attacks on benchmark models with different epsilons. We report the clean accuracy on NeurIPS
dataset, the attack success rate (%) of PGD and FGSM under /., distortion, and the ¢s-norm of C&W and DeepFool,
respectively. All models were trained with an image size of 224, and a model with a lower ASR or higher ¢5-norm is

considered to be more robust.

Clean PGD () FGSM ({o) C&W (£3) DeepFool ({3)

Model ImageNet NeurIPS | 0.1 0.3 0.5 1 3 0.1 0.3 0.5 1 3

ViT-B/16 81.4 90.7 22,6 636 865 975 999|191 387 528 663 79.7 0.468 0.425
ViT-L/16 829 89.3 228 60.1 809 958 100 195 359 449 579 673 0.459 0.548
Mixer-B/16 76.5 86.2 295 634 820 962 100 | 277 493 595 693 78.0 0.375 0.339
Mixer-L/16 71.8 80.0 41.1 673 804 921 994|367 518 569 616 674 0.297 0.377
ResNet-18 (SWSL) 733 90.4 479 937 987 995 99.6 | 380 763 899 962 97.6 0.295 0.132
ResNet-50 (SWSL) 81.2 96.3 394 902 97.0 984 994|263 609 730 838 875 0.380 0.149
ResNet-18 (SSL) 72.6 90.5 423 932 988 99.8 998|343 751 889 96.6 979 0.312 0.142
ResNet-50 (SSL) 79.2 953 395 918 97.6 995 999 | 263 605 752 858 895 0.372 0.149
ResNet-18 69.8 83.7 46.1 90.0 97.8 999 100 | 420 752 885 957 982 0.302 0.237
ResNet-50 76.1 93.0 358 863 979 995 100 | 275 63.1 776 894 939 0.371 0.287

Table 2: Transfer-based black-box attacks on benchmark models. We report the attack success rate (%) and a model
with a lower ASR is considered to be more robust. All models were trained with an image size of 224, and attacked with a

maximum ¢, perturbation of ¢ = 16.

Source model Variant

Target model

ViT-B/16 ViT-L/16 Mixer-B/16 Mixer-L/16 ResNet-18 (SWSL)

ResNet-50 (SWSL) ResNet-18 (SSL) ResNet-50 (SSL) ResNet-18 ResNet-50

ViT-B/16 I-FGSM 100 84.7 48.8 50.5
ViT-L/16 I-FGSM 90.9 99.9 45.7 48.0
Mixer-B/16 I-FGSM 339 253 100 89.1
Mixer-L/16 I-FGSM 27.7 20.1 80.3 99.7
ResNet-18 (SWSL)  I-FGSM 16.2 13.6 24.8 29.5
ResNet-50 (SWSL)  [-FGSM 15.3 135 23.6 29.9
ResNet-18 (SSL) I-FGSM 17.7 13.7 28.6 344
ResNet-50 (SSL) I-FGSM 18.1 15.0 26.4 323
ResNet-18 I-FGSM 18.2 14.7 28.9 35.6
ResNet-50 I-FGSM 17.7 13.6 28.4 345

32.0
30.4
30.6
27.7
99.6
56.5
84.4
58.9
84.6
73.9

20.5 343 23.4 40.9 317
222 34.4 23.6 40.8 309
20.5 345 233 40.8 320
17.0 315 17.5 38.2 28.4
57.1 80.2 58.0 73.5 63.4
99.5 51.6 69.1 49.4 51.0
54.6 99.9 65.4 78.2 66.8
733 64.7 100 54.7 62.2
49.9 85.3 60.4 100 81.6
63.9 74.3 74.7 80.6 100

attack and transfer-based black-box attack.

Query-based Black-box Attacks. We adopt one pop-
ular Boundary Attack [3] and the results are available in
Table 3. As with the white-box attack, a trend can be ob-
served in the black-box that the ViT and Mixer models are
more robust, indicated by the relatively higher ¢5-norm of
the adversarial perturbation.

Transfer-based Black-box Attacks. Transfer-based
black-box attacks exploit the transferable property of adver-
sarial examples, i.e., the adversarial examples generated on
a source model transfer to another unseen target model. For
the source model, we deploy the I-FGSM [23] attack with
7 steps and evaluate the transferability on the target model.
From the result in Table 2, we have two major observations.
First, adversarial examples from the same family (or similar
structure) exhibit higher transferability, suggesting models
from the same family learn similar features. Second, when
a different model architecture is used as the source model,
there is also a trend that CNNs are relatively more vulnera-
ble (i.e., transfer poorly toward foreign architectures). For
example, the transferability from CNN to ViT is often lower
than 20%, while the opposite scenario is much higher.

4.3. Toy Example

In the previous white-box attack, we observed that ViT
and MLP-Mixer are more robust to adversarial examples
than conventional CNNs. To facilitate the understanding of

Table 3: Query-based black-box attack on benchmark
models. We test 100 random samples from NeurIPS
dataset, and the ¢5-norm of adversarial perturbation is pre-
sented.

RNI8
(SWSL)

RN50
(SWSL)

RNI18 RN50
(SSL) RNI8 RNS50

ViT-B  ViT-L Mix-B Mix-L (SSL)

Boundary

3.
(L) 980

7.408 1.968  1.951 1.403 1.846 1.434 1780 1.468 1.740

the mechanisms, we design a toy example of binary clas-
sification where each class is only represented by a single
image with a size of 224. The two images consist of a sin-
gle black stripe on a grey background, differing only in the
orientation of the stripe, namely a vertical and a horizon-
tal stripe. The two images used for training are shown in
Figure 1. We then train a Fully Connected network (FC),
a Convolution Neural Network (CNN), and a Vision Trans-
former (ViT) on the images. Note that we designed the net-
works to be of relatively small capacity (< 5M), due to
the simplicity of the task and to constrain that the networks
have around the same number of parameters. We evaluate
the adversarial robustness of these models with the com-
monly used /5 attacks C&W [4] and DDN [38]. We report
the /o-norm of the adversarial perturbation in Table 4. It
can be observed that the CNN is also less robust than the
FC and the ViT in this toy example setup.

Explanation from the perspective of shift-invariance.
The qualitative results of adversarial perturbations gener-



Figure 1: Images for our binary classification toy example.

a) CNN

Figure 2: Adversarial examples and perturbations generated
against C&W attack using different architectures trained on
toy example.

Adversarlal
examples

Table 4: Results for the ¢5-norm of adversarial perturbation
on our toy example.

C&W ({3) DDN (f2) #params

CNN 12.55 13.91 4.59M
FC 25.06 25.39 4.82M
ViT 27.82 59.99 4.88M

ated by the attacks are shown in Figure 2. For the ViT, one
phenomenon can be observed that the adversarial perturba-
tion consists of square patches. This is likely due to the
division of the input image into patches in the ViT archi-
tecture. Without this split process on the image, we ob-
serve clear stripes but with different patterns for CNN and
FC. While the CNN model generates perturbations with re-
peated stripes, the FC model generates perturbations with
only a single stripe in the middle. It should be noted that
perturbations are generated toward the adversary, i.e., in the
direction of the opposite class’ stripe.

The observation that the CNN model yields stripes all
over the image can be naturally attributed to the shift-
invariant property of the CNN model. From the perspec-
tive of shift-invariance, CNN model recognizes features, i.e.
horizontal or vertical stripe in this setup, regardless of the
position of the features on the image. Thus, it is some-
what expected that the perturbation has stripes in a differ-
ent direction all over the image. For the FC model without
the shift-invariant property, it only recognizes the stripes in
the middle; thus, the resulting perturbation mainly has the
stripe in the middle. This qualitative result suggests that the
reason for CNN being more vulnerable can be partially at-
tributed to its shift-invariance. Future work is needed to fur-
ther establish the link between shift-invariant property and
model vulnerability to adversarial attack.

= ViT-B/16

- ViT-L/16
Mixer-B/16

= Mixer-L/16

ResNet-18
(SwWsL)

= ResNet-50
(swsL)

= ResNet-18
(ssL)

= ResNet-50
(ssL)

L L s L L L s L L h
220 180 140 100 60 20 4 8 12 20 30 40
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Figure 3: Top-1 accuracy across a range of frequency band-
widths from low/high-pass filtering. Left: Low-pass filter-
ing. Right: High-pass filtering.

4.4. Frequency Analysis

We further attempt to explain the lower robustness of
CNN from the perspective of frequency [50, 54]. Follow-
ing the practice in [50, 54], we evaluate the top-1 accuracy
of images from the NeurIPS dataset by applying low-pass
or high-pass filtering, and the results are shown in Fig-
ure 3. For the low-pass filtering, a sharper decline of the
CNN architectures can be observed than for the ViT, indi-
cating that the CNN architectures are more reliant on the
high-frequency features. For the high-pass filtering, the ViT
models show the steepest decline among the models, in-
dicating that the ViT models rely more on low-frequency
features. Note that non-robust features tend to have high-
frequency properties [50, 54, 20], and attribute to decreased
model robustness. This indicates why ViT models are more
robust than CNN architectures. When results from both
low-pass and high-pass filtering are compared, it is ob-
served that Mixers, regardless of their absolute value of ac-
curacy, exhibit a similar trend to CNNs rather than ViTs.

5. Conclusion

Our work performs an empirical study on the adversar-
ial robustness comparison of ViT and MLP-Mixer to the
widely used CNN on image classification. Our results show
that ViT is significantly more robust than CNN in a wide
range of white-box attacks. A similar trend is also ob-
served in the query-based and transfer-based black-box at-
tacks. Our toy task of classifying two simple images with
vertical or horizontal black stripe in the middle indicates
that the lower robustness of CNN can be partially attributed
to the shift-invariant property of CNNs. Our analysis from
the feature perspective further suggests that ViTs are more
reliant on low-frequency (robust) features while CNNs are
more sensitive to the high-frequency features. We also in-
vestigate the robustness of the newly proposed MLP-Mixer,
and find that its robustness generally locates in the middle
of ViT and CNN. Future work is needed for better under-
standing.
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