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Abstract

Deep Neural Networks (DNNs) have achieved great suc-
cess, however, their vulnerability to adversarial examples
remains an open issue. Among numerous attempts to in-
crease the robustness of deep classifiers, mainly adversar-
ial training has stood the test of time as a useful defense
technique. It has been shown that the increased model ro-
bustness comes at the cost of decreased accuracy. At the
same time, deep classifiers trained on balanced datasets ex-
hibit a class-wise imbalance, which is even more severe for
adversarially trained models. This work aims to highlight
that the fairness of classifiers should not be neglected when
evaluating DNNs. To this end, we propose a class-wise loss
re-weighting to obtain more fair standard and robust clas-
sifiers. The final results suggest, that fairness as well comes
at the cost of accuracy and robustness, suggesting that there
exists a triangular trade-off between accuracy, robustness,
and fairness.

1. Introduction
The vulnerability of Deep Neural Networks (DNNs) [19]

to adversarial examples [34, 11] hinders their application
in security-sensitive applications. Various defense tech-
niques have been proposed, to increase the robustness of
convolutional neural networks (CNNs) [30, 12, 42, 24, 22].
While most of these defense techniques are ineffective
against more advanced adversaries or due to inherent de-
sign flaws [7, 1, 37], adversarial training [11, 22] remains
as one of the reliable defenses against adversarial exam-
ples. While adversarial training increases the robustness of
CNNs, it comes at the cost of decreasing the overall accu-
racy [38]. While this trade-off is well known in the ma-
chine learning community, in this work we identify fairness
as an additional trade-off to accuracy and robustness. Com-

*Equal contribution

monly, only a single value is used to describe the standard
accuracy or robust accuracy. A single accuracy value does
not reflect insights about the fairness properties of a clas-
sifier. For example, a critical class-wise accuracy could be
very low, while the class-wise accuracy for another rela-
tively less important class might be higher. Such an imbal-
anced class-wise distribution might have additional security
implications and the average accuracy might give a false
sense of fairness.

We first revisit the phenomenon of class-wise imbalance
of CNNs. Specifically, for models trained on a balanced
dataset, a class-wise imbalance can already be identified
for standard training. This class-wise imbalance is even
more pronounced for adversarially trained models. This
phenomenon is somewhat related to the topic of long-tailed
recognition [16], where class-wise imbalances naturally oc-
cur due to an imbalance in the dataset distribution. Hence,
similar techniques from the area of long-tail recognition
can be applied to improve the naturally occurring class-
wise imbalance. To this end, we propose a class-wise loss
re-weighting scheme. Specifically, we re-weight the class-
wise losses by a class-specific weight, which is adapted ac-
cording to the underlying class-wise accuracy distribution.
In detail, when a class-wise accuracy is above the average,
its class-wise weight should be decreased and vice versa.
Our experimental results on CIFAR10 show that our fair
training scheme results in more fair classifiers. However,
the increased fairness comes at the cost of decreased accu-
racy. Additionally, our fair training methodology can fur-
ther be incorporated into the adversarial training procedure,
where it results in significantly more fair classifiers, com-
pared to the initially more “unfair” robust classifier accu-
racy distribution. However, the increased fairness does also
lead to a decrease in robustness. Due to these observations
next to the proposed fair training strategy, another of our
contributions is the identification of the triangular trade-off
between accuracy, robustness, and fairness for deep learn-
ing classifiers.
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2. Related Work

Adversarial machine learning. Deep Neural Networks
are vulnerable to adversarial examples [34, 11]. This phe-
nomenon has attracted numerous image-dependant attack
methods [34, 11, 26, 22], universal attack methods [25, 27,
31, 21, 45, 44, 2], and defense techniques [30, 12, 42, 24, 4].
However, most defense methods were later shown to pro-
vide a false sense of security [7, 1, 37], mainly due to gra-
dient obfuscation. Among the defense methods, adversarial
training [11, 22] has stood the test of time and is widely
adopted. Numerous works have been proposed to improve
the performance of adversarial training [39, 46, 32, 29, 40,
41, 20]. However, it has later been suggested that the robust-
ness may be at odds with accuracy [38]. Tsipras et al. fur-
ther argue that robust classifiers learn fundamentally differ-
ent feature representations than standard classifiers, which
has been further investigated by [14]. Inspired by the ac-
curacy robustness conflict, the adversarial training method
TRADES had been introduced to trade-off adversarial ro-
bustness against accuracy [47]. Friendly adversarial train-
ing [48] tackles the robustness-accuracy issue by searching
for weaker adversaries during adversarial training.

Long-tailed recognition. Most classification datasets
come with a balanced label distribution [17, 18]. However,
in real-world classification problems often long-tailed label
distributions are exhibited, where a greater amount of la-
bels is only associated with a few classes [16]. Neglecting
such imbalance can have detrimental effects on the model
performance [15, 5]. The long-tail problem has been ex-
tensively studied in the literature and can traditionally be
divided into two streams, re-sampling [8, 15, 13, 33, 5], and
re-weighting [49, 9, 6, 35]. Due to our observed class imbal-
ance, this topic is closely related to long-tailed recognition,
and concepts from long-tailed recognition can be borrowed.

Fairness in adversarial machine learning With the wide
adoption of Deep Learning models, their fairness properties
have also been studied [23, 10]. In this work, we mainly fo-
cus on the fairness properties of standard and robust deep
classifiers trained on balanced datasets in the context of
their class-wise accuracies. Robustness bias of DNNs has
been discussed in [28], which refers to certain subgroups
of classes that exhibit a decreased adversarial robustness
and might therefore be at a disadvantage. The phenomenon
of class-wise accuracy has also been discovered by other
works concurrently to ours [43, 36, 3]. Similar to our ap-
proach the fair robust learning framework [43] also attempts
to train robust models with a balanced accuracy and ro-
bustness performance. Inspired by the class-wise imbal-
ance phenomenon [36] proposed the temperature-PGD at-
tack which exploits the robustness disparity among classes.

Figure 1: Class-wise accuracies for different model archi-
tectures trained on the ImageNet dataset

Figure 2: Class-wise accuracies for different model archi-
tectures adversarially trained on the ImageNet dataset

3. Class-imbalance Phenomenon.

In this section we revisit the class-imbalance phe-
nomenon for different models trained on the ImageNet
dataset. Figure 1 and Figure 2 show the class-wise accu-
racy deviations from the mean accuracy for standard trained
and adversarially trained model architectures. Two major
observations can be made. First, the class-wise accuracies
for standard and adversarially trained models are very sim-
ilar among different model architectures. Second, overall
the class-wise accuracy deviations from the mean are more
severe for adversarially trained models than for standard
trained models. This phenomenon can be observed more
pronounced for the CIFAR10 model architectures shown in
Figure 3 and Figure 4.

4. Methodology

Our proposed solution to mitigate the class-imbalance
occurring in standard and robust DNNs is based on a class-
specific re-weighting strategy. Given a C-classification
dataset X composed of samples x ∈ Rw×h×3 and their
corresponding ground truth y ∈ [1, C], a classifier Fθ, pa-
rameterized through the weights θ (from here on omitted)
is commonly trained via mini-batch stochastic gradient de-
scent (SGD). After training a classifier, one common indi-
cator for the performance is the average accuracy ζ ∈ R.
In this work, we additionally focus on the class-wise ac-
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Algorithm 1: Fair Training Algorithm
Input: Training Dataset X , Classifier Fθ , Loss function

L, Optimizer Optim, Hyperparameters α, β
Output: Fair classifier Ffair

1 γ ← 1 . Initialization
2 τ ← 0 . Initialization
3 Xtrain,Xval ← X . Split the data
4 for i, . . . , I do
5 xtrain, ytrain ∼ Xtrain

6 xval, yval ∼ Xval

7 for c, . . . , C do
8 gc ← ∇γcL(F, xctrain, y

c
train)

9 τ c ← τ c + β·CWAD(F, xcval, y
c
val)

10 end
11 θ ← Optim(g) . Update weights
12 γ ← γ · (1 + α · sign (τ)) . Update

13 end

curacy, which we indicate by φ ∈ RC . From these two
metrics, the class-wise accuracy deviation can be calculated
as CWAD(F, x, y) = φ − ζ. A common choice for the
loss function L is the cross-entropy loss. The objective of
the proposed fair training strategy is a class-wise weighting
of the losses based on the class-wise accuracies. Simply
speaking, when the accuracy deviation for a class is lower
than one, the weight for the loss for samples should be in-
creased, and vice versa.

The fair training algorithm is described in Algorithm 1.
We introduce a class-wise weighting vector γ ∈ RC , where
each entry corresponds to the respective class-wise weight.
The values of γ will be updated based on the moving av-
erage of the class-wise accuracy deviations τ . To obtain
the moving average of the class-wise accuracy deviations
we use a small portion of the original training dataset as
a validation dataset. The loss values of the samples from
a certain class are multiplied with their respective weight
γc as shown in line 8 of the algorithm. By calculating the
class-wise accuracy deviation from the hold-out validation
data the moving average of the class-wise accuracy devia-
tions γ can be updated. The classifier weights are updated
with the gradients calculated from the weighted losses. Fi-
nally, in line 12 of the algorithm, the class-wise weights are
updated, by multiplying the current γ by a multiplier, based
on the accuracy deviation. Here the sign function fulfills the
purpose to indicate the update direction, while α ∈ [0, 1] in-
dicates the update step. Note, that for α = 0, the algorithm
equals standard training.

5. Experiments
5.1. Experimental Setup

We evaluate the fair training algorithm for a ResNet56
and Wide-ResNet-28-10 architectures on CIFAR10 for

Table 1: Comparison of fair training with standard training.
The values in the worst and best column indicate the worst
and best class-wise accuracy, respectively together with the
corresponding accuracy deviation.

Avg. Acc Worst Best

ResNet56 (Std.) 92.8 86.2 / -6.6 96.9 / 4.1
ResNet56 (Fair) 90.3 87.8 / -2.5 92.1 / 1.8
WRN-28-10 (Std.) 95.4 89.0 / -6.4 98.0 / 2.6
WRN-28-10 (Fair) 92.9 89.0 / -3.9 94.6 / 1.7

Figure 3: Comparison of accuracy deviations of the stan-
dard and fair training.

standard and adversarial training. We set the two hyper-
parameters to α = 0.001 and β = 0.1 for all our experi-
ments if not otherwise mentioned. To obtain robust models,
we use adversarial training with l∞-PGD attack [22]. We
use an allowed perturbation magnitude ε = 8/255 for im-
ages in range [0, 1], a number of 7 steps and a step size
calculated as 2.5 ε

#steps . To evaluate adversarial robustness
we also use the same l∞ attack but with an increase in the
number of steps to 10.

5.2. Standard Training

Table 1 compares the performance of the proposed fair
training with standard training. The average accuracies
show that the fair training strategy leads to slightly infe-
rior performance. For example, the standard accuracy of
the ResNet56 accuracy decreases by 2.5% with fair train-
ing. However, the class-wise deviation from the mean is
significantly decreased. The class-wise deviation for the
ResNet56 and Wide-ResNet are decreased by 4.1% and
2.5%, respectively, resulting in fairer classifiers. This result
suggests a trade-off between standard accuracy and fairness.
In Figure 3 the class-wise accuracies of the compared mod-
els are shown. Interestingly, with standard and fair training
class number 4 (“cat”) stays the worst class. Further, class
number 6 (“dog”) changed from being a relatively weak
class to a class with a positive accuracy deviation.
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Table 2: Comparison of fair training with adversarial training. The values in the worst and best column indicate the worst
and best class-wise accuracy, respectively, together with the corresponding accuracy deviation (left). The worst and best
class-wise robustness accuracies under adversarial attack are shown on the right.

Avg. Acc Worst Clean Best Clean Avg. Adv. Worst Adv. Best Adv.

ResNet56 (Adv.) 79.8 51.9 / -27.9 94.0 / 14.2 47.8 16.3 / -31.5 65.8 / 18.0
ResNet56 (Adv. Fair) 76.5 70.5 / -6.0 83.4 / 6.9 39.2 27.0 / -12.2 51.8 / 12.6
WRN-28-10 (Adv.) 86.3 74.9 / -11.4 94.5 / 8.2 43.8 17.5 / -26.3 68.2 / 24.4
WRN-28-10 (Adv. Fair) 80.7 77.7 / -3.0 84.7 / 4.0 34.3 20.9 / -13.4 46.5 / 12.2

Figure 4: Comparison of accuracy deviations of the adver-
sarial training and adversarial fair training.

5.3. Adversarial Training

Table 3 shows the results for adversarial training and
fair adversarial training on CIFAR10. It can be observed
that adversarially trained models are more “unfair”, as in-
dicated by their high class-wise accuracy deviations. For
example, the lowest class-wise accuracy of ResNet56 is
51.7%, which deviates by 27.9% from the average accu-
racy of 79.8%. Adversarial fair training can significantly
decrease this class-wise accuracy discrepancy to −6% for
ResNet56. Table 2 additionally shows the evaluation of
the adversarially trained models under adversarial attack.
Interestingly, there also exists a class-wise robustness dis-
crepancy for adversarially trained models, with the worst
class-wise accuracy achieving robustness of only 16.3% and
the best having a class-wise robustness of 65.8%. Adver-
sarial fair training also increases the robustness fairness.
For example, the robustness of the worst robust class was
increased from 16.3% to 27.0% for ResNet56. Figure 4
presents the detailed class-wise accuracies for the adversar-
ially trained models. The proposed fair training strategy
results in a more fair robust classifier, with the class-wise
accuracy deviations being closer to zero for all classes. The
robustness deviations for the adversarially trained models
are shown in Figure 5, where a similar fairness trend can be
observed.

5.4. Ablation

In Figure 6 the mean accuracy, as well as the highest
and lowest class-wise accuracy are shown over various α

Figure 5: Comparison of robustness deviations of the adver-
sarial training and adversarial fair training under adversarial
attack.

Figure 6: Ablation on Alpha

values. The accuracy-fairness trade-off can be well ob-
served for increasing α values. While the band around the
mean value decreases, indicating a more fair classifier, the
mean accuracy decreases, for increasing α values. Among
the examined α values the fairest classifier is obtained for
α = 0.001, which motivated us to choose this value for our
experiments.

6. Conclusion
This work investigated the fairness of standard and ro-

bust classifiers and proposes a class-wise loss re-weighting
strategy to increase fairness. The results suggest that fair-
ness comes at the cost of accuracy or robustness and adds a
third dimension to the already explored accuracy-robustness
trade-off, suggesting a triangular trade-off between accu-
racy, robustness, and fairness. We leave the mitigation of
the triangular trade-off open for future work.
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