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Abstract

While progress has been made in crafting adversarial
examples with visually imperceivable changes, construct-
ing semantically meaningful ones remains a challenge. In
this paper, we propose a framework to create semantics
preserving adversarial examples. The motivating principle
behind our proposal is that semantics are better captured
in the low-level embedding space of the inputs than in the
noisy high-level feature space. Our proposal uses a manifold
learning method to first learn the low-dimensional geomet-
ric summaries of the inputs via statistical inference. Then,
we perturb the elements of the learned manifold to create
adversarial examples. To ensure that the semantics of the
adversarial examples are preserved, we develop a manifold-
invariant adversarial perturbation technique that induces
the perturbed elements to remain in the manifold, while sat-
isfying adversarial constraints. Our evaluations on toy data,
images and text show that our proposed attack can produce
adversarial examples that retain a greater degree of seman-
tic similarity compared to existing attacks. Furthermore, our
attack also has a high attack success rate against various
certified and non-certified defenses.

1. Introduction
Deep learning models are fragile, as small, inconspicuous

noise injected to the input data can cause a highly accurate
model to suddenly make erroneous predictions [12, 34]. This
problem known as adversarial examples has sparked keen
research interests resulting in a number of approaches for
attacking deep learning models [8, 23, 3, 26, 6]. In general,
an adversarial attack is considered successful if the exam-
ples one crafts can mislead a model and are perceptually
similar to or indistinguishable from the benign inputs. Ex-
isting attacks use `p norm distances to measure the degree
of similarity between the adversarial example and its source
input [3, 10, 6]. However, it is well documented that using
nearness (in the input space) according to an `p norm does
not guarantee semantic similarity [18, 32]. In the image do-

main specifically, perturbations generated by existing attacks
do not always preserve the true nature of the image [32]; for
instance the resulting image is sometimes perceptually dis-
torted, blurry, or unrealistic as exemplified in Figure 1. In
text, small changes to a vectorized input sentence can lead to
large differences in meaning [38]. Thus, searching for adver-
sarial examples in uniformly bounded regions [6, 22, 12, 34]
using `p norms, or confining the adversarial examples to
a simple latent structure (e.g., using a Gaussian distribu-
tion), are insufficient for creating adversarial examples that
preserve the semantic content of the inputs.

(a) PGD [26] (b) [33]

Figure 1: The adversarial images in (a) and (b) are supposed
to represent the digits 0 and 1, yet they look heavily distorted,
blurry, and not quite legitimate 0s or 1s. Images from [33].

In this paper we introduce a method to address the limi-
tations of previous approaches by constructing adversarial
examples that explicitly preserve the semantics of the inputs.
Our premise is that semantics are better captured in the low-
level feature space than in the noisy high-level input space.
Specifically, if two input images or sentences are semanti-
cally similar in the low-level feature space, then they should
be close to each other in the input space. We achieve this by
characterizing and aligning the low dimensional geometric
summaries of the inputs and the adversarial examples. The
summaries capture the semantics of the inputs and the adver-
sarial examples. The alignment ensures that the adversarial
examples reflect the semantics of the inputs. We explain the
difference between existing attacks and our proposal using
an illustration of the original (x) and adversarial examples
(x′) produced by these attacks in Figure 2. Existing attacks
only consider `p norm constraint ‖x′ − x‖p ≤ εattack while
generating adversarial examples. Consequently, the resulting
adversarial examples can lie far from the data manifold (Fig-
ure 2a), leading to a loss of semantic similarity. In contrast,
our proposed attack additionally ensures that the adversarial
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Figure 2: Existing attacks create adversarial examples that
may not lie on the data manifold. In contrast, our proposed
attack creates semantically similar adversarial examples that
lie closer to the data manifold.

example lies closer to the data-manifold (Figure 2b) to pre-
serve semantic similarity. The framework of our proposed
attack can be decomposed into two key steps:

1. Manifold Learning: To capture the semantics of the in-
put, we first learn the low dimensional geometric summaries
of the inputs via statistical inference. We propose a manifold
learning technique using Stein variational inference to learn
the low-dimensional latent representation of the input.

2. Semantics Preserving Adversarial Attack: We propose
a learning algorithm to perturb the latent-space representa-
tions of the inputs, which can be projected back to the input
space to create semantically similar adversarial examples.
The perturbation generated by our algorithm needs to satisfy
two key requirements. First, we want the examples produced
from the perturbed latent codes to lie close to the data mani-
fold. We leverage the manifold invariance concept of [31] to
generate the perturbations, which ensures that the resulting
adversarial example preserves semantic similarity with the
original input. Second, we want the perturbation to result
in an adversarial example that is misclassified by the target
model. This can be achieved by optimizing the perturbation
using an adversarial objective.

To evaluate our approach, we test our method on toy
data, images and text, and validate it empirically against
strong certified and non-certified adversarial defenses. Our
experiments show that our attack can produce adversarial
examples with a high attack success rate and better semantic
similarity compared to existing attacks.

2. Preliminaries
Notations. Let x be a sample from the input space X , with
label y from a set of possible labels Y , and D = {xn}Nn=1 a
set of N such samples. Also, let d be a distance measure
on X capturing closeness in input space, or on Z , the
embedding space of X , capturing semantic similarity.

Standard `p-ball Threat Models. Given a classifier gν and
its loss function `, the goal of the attacker is to produce an
adversarial example by maximizing the objective below over
an εattack-radius ball around x [4, 3, 10, 6].

x′ = argmax
x′∈X

`(gν(x′), y) such that ‖x′ − x‖∞ ≤ εattack.

Our Proposal. Above, the search region for adversarial ex-
amples is confined to a uniformly-bounded ball B(x; εattack).
In reality, the constraints on the search space imposed by
B is not a sufficient condition to ensure semantic similarity.
Our main intuition in this paper is that the embedding space
Z better captures the semantics of D. By operating in the
embedding space, we can craft adversarial examples with
better semantic similarity compared to existing attacks.

In this paper we consider a white-box scenario, where we
have perfect knowledge of the architecture of a classifier gν
including its loss function and weights. As the attacker, we
want to construct semantics preserving adversarial examples
that fool gν . We evaluate also our attack framework against
various certified and non-certified defenses.

3. Attack Framework
Given a sample x ∈ D and its class y ∈ Y , our goal

is to construct an adversarial example x′ that shares the
same semantic content as x. We assume the semantics of x
(resp. x′) is modeled by a learned latent variable model p(z)
(resp. p′(z′)), where z, z′ ∈ Z . In this setting, observing
x (resp. x′) is conditioned on the observation model p(x|z)
(resp. p(x′|z′)), that is: x ∼ p(x|z) and x′ ∼ p(x′|z′), with
z ∼ p(z) and z′ ∼ p′(z′). To ensure that x′ retains the
semantics of the original x, we learn this model in a way
that d(z, z′) is small and gν(x) 6= gν(x′). We illustrate our
attack framework in Figure 3.

Our framework is essentially a variational auto-encoder
(VAE) with a set of encoders E, which are used (i.) to
learn the geometric summaries of D via manifold learning
using Stein variational gradient descent (SVGD) [25], and
(ii.) to perturb such summaries using Gram-Schmidt basis
sign method [9] (please see Appendix A for background on
VAE and SVGD). We define the encoder E as a set of M
embedding maps h1, ..., hM , where hm : X → Z for m =
1, ...,M , parameterized by Θ = {θm}Mm=1 that generates a
set of M latent codes {zm}Mm=1. From these latent codes,
we compute z′m = zm + δ′m, the perturbed version of zm,
such that d(zm, z

′
m) is small and z′m lies in the manifold that

supports p(zm). Note that a manifold here refers to a set
of points in Z where every point is locally Euclidean [31].
We devise our perturbation procedure by generalizing the
manifold invariance concept of [31] to the space Z . We
average the set of perturbed latent codes {z′m} to compute z′.
Using the decoder decφ : Z → X , we craft x′ = decφ(z′)
such that gν(x) = y and gν(x′) 6= y. Then, we say that x′

is adversarial to x and preserves its semantics.
Efficiently Storing Encoder Parameters. For large M ,
maintaining Θ can be computationally prohibitive because
of the large memory footprint. To sidestep this issue, we
maintain only one (recognition) network fη that takes as
input ξm ∼ N (0, I) and outputs a particle θm. We describe
our manifold learning method using SVGD and the training
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Figure 3: The set of encoder model parameters Θ =
{θm}Mm=1 are obtained from the recognition network fη
using inputs {ξm}Mm=1. Given an input x ∈ D, we use
the encoders to sample the latent codes z1, ..., zM via Θ.
We learn semantics preserving adversarial perturbations to
generate perturbed versions of the latent codes z′1, ..., z

′
M .

The adversarial example x′ ∼ pφ(x′|z′) is generated via
posterior sampling of the averaged latent code z′.

process for the recognition network fη in Section 4.

4. Manifold Learning via SVGD
To characterize the manifold M of D, we learn

the encoding function q(.;ψ) (as explained in Ap-
pendix A.1). Similar to [28], we optimize the divergence
KL(q(z|x;ψ)‖p(z|x;φ)) using SVGD. Learning q(.;ψ),
however, induces inherent uncertainty we ought to capture in
order to learnM efficiently. One way to capture such uncer-
tainty is to use dropout [28]. However, Bayesian methods,
provide a more principled way to model uncertainty through
the posterior distribution over model parameters [15]. [19]
have shown that SVGD can be cast as a Bayesian approach
for parameter estimation and uncertainty quantification. As
SVGD maintains M particles, we use each of the M in-
stances of model parameters Θ = {θm}Mm=1 to define the
weights and biases of a Bayesian Neural network (BNN).
Encoder Training. We train each θm via SVGD using the
operator τ(.) as described in Equation 1. In the following,
we use the notation SVGDτ (Θ) to denote one SVGD training
update of all the model parameters Θ = {θm}Mm=1.

θt+1
m ← θtm + αtτ(θtm), where τ(θtm) is defined

in Equation 6 with zt replaced by θtm and zti by θti .
(1)

As each θ parameterizes a BNN, upon observing D, we
update the prior p(θtj) to obtain the posterior p(θtj |D) ∝

p(D|θtj)p(θtj), which captures the uncertainty. We refer the
reader to the Appendix D for a formulation of p(θtj |D) and
p(D|θtj). By definition, the likelihood p(D|θtj) is evaluated
over all pairs (x, z̃) where x ∈ D and z̃ is a dependent
variable. However, since z̃ is not given, we introduce the
inversion process in Appendix B (Figure 4) to generate such
z̃ using Algorithm 1. Given x ∈ D, we sample its latent
code z from p(z|x;D) using Monte Carlo:

p(z|x;D) =

∫
p(z|x; θ)p(θ|D)dz

≈ 1

M

M∑
m=1

p(z|x; θm) with θm ∼ p(θ|D).

(2)

Recognition Network Training. As mentioned before, we
introduce the recognition network fη to minimize the mem-
ory footprint of storing Θ. fη learns the trajectories of the
model parameters θm as they get updated via SVGD. The
recognition network fη serves as a proxy to SVGD sampling
strategy, and is refined through a small number of gradient
steps as shown in Equation 3 to get good generalization.

ηt+1 ← argmin
η

M∑
m=1

∥∥∥θt+1
m − f(ξm; ηt)︸ ︷︷ ︸

θtm

∥∥∥
2

(3)

In Section 5, we describe our approach to generate semantics-
preserving adversarial perturbations.

5. Semantics Preserving Adversarial Attack
Our goal is to create semantics preserving adversarial

examples by perturbing the latent representation of the in-
puts, which can then be used by the decoder to generate
adversarial examples (x′). We want the adversarial example
generated from the perturbation to satisfy two properties:
(i.) Semantics preservation: x′ needs to be semantically
similar to x, in addition to satisfying the ‖.‖∞ constraint.
(ii.) Misclassification: x′ should cause misclassification in
the target model; i.e. gν(x′) 6= gν(x). In this section, we
explain how manifold invariant localized perturbations can
be used to create semantics preserving adversarial examples.

5.1. Semantics Preserving Localized Perturbations

We want the perturbed elements to reside inM and ex-
hibit the semantics of D that M captures. Formally, we
seek an affine mapping h′ : M → M such that for any
point z ∈M, a neighborhood U of z is invariant under h′:
z′ ∈ U ⇒ h′(z′) ∈ U . Then, we say thatM is preserved
under h′. We leverage the local smoothness ofM to learn
each δ′m in a way to encourage z′ to reside inM in a close
neighborhood of z using a technique called Gram-Schmidt
Basis Sign Method which we describe next.
Gram-Schmidt Basis Sign Method (GBSM). Let X be
a batch of samples of D, Zm a set of latent codes zm ∼
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p(z|x; θm) where x ∈ X, and θm ∈ Θ. The intuition be-
hind GBSM is to utilize the fact that topological spaces
are closed under their basis vectors to renderM invariant
to the perturbations δ′m. As M is locally Euclidean, we
compute the dimensions of the subspace Zm by applying
Gram-Schmidt [9] to orthogonalize the span of representa-
tive local points and find its basis vectors uim ∈ Um. For
any zm ∈ Zm, we learn to generate its perturbed version z′m
along the directions of an orthonormal basis Um. We want
the perturbations δm to be small. Thus, we minimize:

min
δm

z′m := zm + δm � sign(uim)∀m s.t ‖x′ − x‖∞ < εattack

where x′ ∼ p(x′|z′;φ) and z′ =
1

M

M∑
m=1

z′m.

(4)
We incorporate the constraint on x′ by using ‖x′ − x‖2 as a
regularization term in the training loss. Since ‖.‖∞ ≤ ‖.‖2
(see proof in Appendix E), we can satisfy the ‖.‖∞ constraint
by ensuring ‖x′ − x‖2 ≤ εattack during training.

5.2. Generating Adversarial Examples

We create adversarial examples by optimizing the log-
likelihood Lx′ of y′ ∈ Y \ {y} where y is the class of x.

Lx′ = max
y′∈Y\{y}

logP (y′|x′; ν). (5)

Lx′ defines the cost incurred for failing to fool gν . In Algo-
rithm 2 (Appendix B), we unify our manifold learning and
perturbation strategy to create adversarial examples.

6. Experiments & Results
We validate our white-box and non-targeted attack model

based on three criteria: (i.) adversarial strength, (ii.) sound-
ness via manual evaluation, and (iii.) manifold preservation.
We refer the reader to Appendix C.1 for a study of manifold
preservation using the Swiss Roll dataset.

Setup. We evaluate the strength of our MNIST, CelebA,
CIFAR10, and SVHN adversaries against adversarially
trained ResNets [13] with a 40-step Projected Gradient De-
scent (PGD) [12, 3] and noise margin εattack ≤ 0.3. We use
similar ResNet models as [33]. For MNIST, we also target
the certified defenses [30] and [21] with εattack = 0.1. The
accuracies of all the models we target are higher than 96.3%.
Additionally, we also evaluate our attack on a text classifica-
tion problem using the SNLI dataset [5] in Appendix C.2.

6.1. Adversarial Strength

Attack Success Rate (ASR) is the percentage of examples
misclassified by the adversarially trained Resnet models.
Our ASR for MNIST is 97.2%. Also, with εattack ≈ 1.2, we
achieve an ASR of 97.6% against [21]. Finally, we achieve
an ASR of 87.6% for SVHN, and 84.4% for CelebA. We give
examples of adversarial images we generate in Appendix G.

6.2. Manual Evaluation

To assess the semantic soundness of the adversarial ex-
amples, we carry out a pilot study by asking three yes-or-no
questions: (Q1) are the adversarial examples semantically
sound?, (Q2) are the adversarial inputs similar perceptually
or in meaning to the corresponding true inputs? and (Q3)
are there any interpretable visual cues in the adversarial im-
ages that support their misclassification? We ask the human
subjects to assess the soundness of the adversarial examples
based on the semantic features (shape, distortion, contours,
class, image quality, brightness) of the source images.
Pilot Study I. In this section, we compare the semantic
soundess of the adversarial examples produced by our attack
with those generated with existing attacks.To evaluate se-
mantic similarity, we perform manual human evaluations on
the adversarial examples produced by [33], [38] and PGD
attacks. Our results in Table 1 show that our attack produces
adversarial examples with better semantic properties com-
pared to existing attacks. Additionally, we also report the
semantic soundness of adversarial examples produced by
our attack against various defenses in Appendix C.3.

Table 1: Pilot Study I. Manual evaluation results for M1 (Our
Method), M2 ([33]), M3 ([38]), and M4 (PGD).

QUESTIONS

MNIST

M1 M2 M3 M4

Q1: YES 100 % 85.7 % 97.9 % 75.2 %
Q2: YES 100 % 79.1 % 91.2 % 65.6 %
Q3: NO 100 % 71.6 % 94.8 % 42.1 %

6.3. Key Takeaways

As reflected in the pilot study and the attack success rates,
we achieve good results in the image and text classification
tasks both against the certified and non-certified defenses.
Although the defenses are resilient to adversarial examples
crafted in the input space, we achieve nonetheless manual
success rates higher than the rates certified for when the
examples are constructed in the latent space within bounded
search regions. In text, we achieve better results than [38].

7. Conclusion
Many approaches in adversarial attacks do not generate

adversarial examples that preserve the semantics of the in-
puts. We have presented a method to generate adversarial
examples that maintain similar semantics as the source in-
puts by conducting the search for adversarial examples in
the manifold of the inputs. Our evaluations on both image
and text domain datasets show that our attack produces ad-
versarial attacks with a high attack success rate and better
semantic similarity compared to several existing attacks.
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A. Background on Manifold Learning
Our proposed attack uses manifold learning to first map the inputs to a low-dimensional embedding space and then uses

this embedding space representation to craft an adversarial example. Manifold learning is based on the assumption that high
dimensional data lies on or near lower dimensional manifolds in a latent space. Our paper uses a Variational Auto-Encoder
(VAE) trained using Stein Variation Gradient Descent (SVGD) for manifold learning. We provide background information on
VAEs and SVGD in this section before describing our attack framework in section 3.

A.1. Variational Auto Encoders

VAEs [20] model the datapoints xn ∈ D using a decoder xn ∼ p(xn|zn;φ). To learn φ, one typically maximizes a
variational approximation to the empirical expected log-likelihood 1/N

∑N
n=1 log p(xn;φ), called evidence lower bound

(ELBO), defined as:

Le(φ, ψ;x) = Eq(z|x;ψ) log

[
p(x|z;φ)p(z)

q(z|x;ψ)

]
= −KL(q(z|x;ψ)‖p(z|x;φ)) + log p(x;φ).

Here, q(z|x;ψ) denotes the encoder function. The expectation Eq(z|x;ψ) can be re-expressed as a sum of a reconstruction loss,
or expected negative log-likelihood of x, and KL(q(z|x; )‖p(z)). The KL forces the encoder qψ to follow a distribution similar
to p(z). VAEs learn an encoding function that maps the data manifold to an isotropic Gaussian. However, [17] have shown that
the Gaussian form imposed on p(z) may result in uninformative latent codes; hence to poorly learning the semantics of D [37].
To sidestep this issue, we minimize the divergence KL(q(z|x;ψ)‖p(z|x;φ)) using Stein Variational Gradient Descent [25]
instead of explicitly optimizing the ELBO.

A.2. Stein Variational Gradient Descent

SVGD is a nonparametric variational inference method that combines the advantages of MCMC sampling and variational
inference. Unlike ELBO [20], SVGD does not confine a target distribution p(z) it approximates to simple or tractable
parametric distributions. It remains an efficient algorithm. To approximate p(z), SVGD maintains M particles z = {zi}Mi=1,
initially sampled from a simple distribution, it iteratively transports via functional gradient descent. At iteration t, each particle
zt ∈ zt is updated as:

zt+1 ← zt + αtτ(zt) where

τ(zt) =
1

M

M∑
i=1

[
k(zti , z

t)∇zti log p(zti) +∇ztik(zti , z
t)
]
,

(6)

where αt is a step-size and k(., .) is a positive-definite kernel. In Equation 6, each particle determines its update direction by
consulting with other particles and asking their gradients. The importance of the latter particles is weighted according to the
distance measure k(., .). Closer particles are given higher consideration than those lying further away. The term∇zik(zi, z)
is a regularizer that acts as a repulsive force between the particles to prevent them from collapsing into one particle. Upon
convergence, the particles zm will be unbiased samples of the true distribution p(z).
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B. Algorithms for Our Proposed Attack

Algorithm 1 Inversion with one particle θ.
Require: Input x ∈ D
Require: Model parameters η

1: Sample ξ ∼ N (0, I)
2: Get the weight vector θ = fη(ξ)
3: Given x, sample z ∼ p(z|x;θ)
4: Sample x̃ ∼ p(x|z,φ)
5: Sample z̃ ∼ p(z|x̃,θ)
6: Use x and z̃ to compute p(z̃|x;θ)

Figure 4: As the decoder pφ gets more accurate (reconstruction loss ‖x− x̃‖2 becomes small), we get closer to the optimal z̃.

Algorithm 2 Adversarial Examples. Lines 7 computes distances between sets keeping a one-to-one mapping.

Require: Training samples (x, y) ∈ D ×Y
Require: Number of model instances M and inner updates T
Require: Initialize weights η, φ . recognition net fη , decoder pφ
Require: Learning rates α, β

1: Sample ξ1, ..., ξM from N (0, I) . inputs to recognition net fη
2: for t = 1 to T do
3: Sample Θ = {θm}Mm=1 where θm = fη(ξm)
4: Sample z1, ..., zM using Θ in Equation 2
5: Using Equation 4, get z′1, .., z

′
M and average them to get z′ . learn latent perturbations δ1, ..., δM

6: Sample x̃ ∼ p(x|z,φ) and x′ ∼ p(x′|z′,φ) . clean and perturbed reconstructions
7: η ← η −α∇η‖Θ − SVGDτ (Θ)‖2 (requires x̃) . apply inversion on x̃ and update η
8: Lx̃ := ‖x− x̃‖2; Lx′ := − min

y′∈Y\{y}
log (P (y′|x′; ν)) + λ ∗ ‖x− x′‖2 . scaling reconstruction loss on x′ by λ

9: φ← φ− β∇φ(Lx̃ + Lx′) . decoder update using Adam optimizer

C. Additional Experiments

C.1. Manifold Preservation

We experiment with a 3D non-linear Swiss Roll dataset comprising of 1600 datapoints grouped in 4 classes. Figure 5
shows the 2D plots of the latent codes from the learnt manifold (left), latent codes of adversarial examples (with εattack ≤ 0.3)
produced by our attack (center) and latent codes of PGD adversarial examples (right). These plots show that, unlike PGD, the
latent codes of our adversarial examples are well-aligned with the manifold.

C.2. Evaluations on Text Classification Task using SNLI Dataset

We consider the SNLI [5] dataset. SNLI consists of sentence pairs where each pair contains a premise (P) and a hypothesis
(H), and a label indicating the relationship (entailment, neutral, contradiction) between the premise and hypothesis. For
instance, the following pair is assigned the label entailment to indicate that the premise entails the hypothesis.
Premise: A soccer game with multiple males playing. Hypothesis: Some men are playing a sport.

Setup. We perturb the hypotheses while keeping the premises unchanged. Similar to [38], we generate adversarial text at word
level using a vocabulary of 11,000 words. We also use ARAE [36] for word embedding, and a CNN for sentence embedding.
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(a) (b) (c)

Figure 5: Swiss Roll manifold learned with encoder E (left), and after perturbing its elements with GBSM (middle) vs. that of
PGD adversarial examples (right) learned using E.

To generate perturbed hypotheses, we consider three types of decoders pφ: (i.) a transpose CNN, (ii.) a language model, and
(iii.) we use the decoder of a pre-trained ARAE model. The transpose CNN generates more meaningful hypotheses (see
examples in Table 8) than the language model and the pre-trained ARAE model although we notice sometimes changes in
the meaning of the original hypotheses. We discuss these limitations in Appendix where we provide also more examples of
adversarial text.
Attack Success Rate (ASR). We attack an SNLI classifier that has a test accuracy of 89.42%. Given a pair (P, H) with label l,
its perturbed version (P, H’) is adversarial if the classifier assigns the label l to (P, H), (P, H’) is manually found to retain the
label of (P, H), and such label differs from the one the classifier assigns to (P, H’).

Unlike for adversarial images, in order to compute the ASR for our text adversaries, we rely on human evaluation. The
reason is that the sentence pair (P, H’) we adversarially generate might not be adversarial to a human since the new class the
target model assigns to (P, H’) may actually reflect the true relationship between P and H’. Consequently, we run a pilot study
which we detail in Section 7.3.
Pilot Study II - SNLI. Using the transpose CNN as decoder pφ, we generate adversarial hypotheses for the SNLI sentence
pairs with the premises kept unchanged. Then, we manually select 100 pairs of clean sentences (premise, hypothesis), and
adversarial hypotheses. We also pick 100 pairs of sentences and adversarial hypotheses generated using [38]’s method against
their treeLSTM classifier. We choose this classifier as its accuracy (89.04%) is close to ours (89.42%). Finally, to quantify the
percentages of coherent text adversaries we generate, we randomly pick 100 pairs of sentences, and 100 pairs of sentences
generated using [38]’s treeLSTM to carry out a pilot study where we ask three questions (Q1) are the adversarial samples
semantically sound?, (Q2) are they similar to the true inputs? and (Q3) what is the percentage of examples that are adversarial
and semantically sound out of the random samples we select? We report the evaluation results in Table 2.

Table 2: Pilot Study II. Manual evaluation results for SNLI.

QUESTIONS OUR METHOD [38]

Q1: YES 82.9 % 78.8 %
Q2: YES 61.2 % 55.9 %
Q3 (PCT.) 60.3 % 53.7 %

C.3. Evaluation against Defenses

We study the semantic soundness of the adversarial examples produced by our attack by attacking various defenses. For
MNIST, we pick 100 images (10 for each digit) and generate adversarial examples against a 40-step PGD ResNet (M1) with
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εattack ≤ 0.3. We also target the certified defenses of [30] (M2) and [21] (M3) with εattack = 0.1. We repeat this study for the
SVHN and CelebA datasets (for gender classification) by attacking a 40-step PGD ResNet. For all three datasets, we hand the
images and the questionnaire (Q1, Q2, Q3) to 10 human subjects for manual evaluation. We report the results for MNIST in
Table 3, and the results for CelebA and SVHN in Table 4. Our results show that our attack can produce semantics preserving
adversarial examples with a high success rate against various defenses as well as different target datasets.

Table 3: Pilot Study I. Manual evaluation results of our attacks against M1 (40-step PGD), M2 ([30]) and M3 ([21]).

QUESTIONS

MNIST

M1 M2 M3

Q1: YES 100 % 100 % 100 %
Q2: YES 100 % 100 % 100 %
Q3: NO 100 % 100 % 100 %

Table 4: Pilot Study I. Our results for CelebA and SVHN.

QUESTIONS CELEBA SVHN

Q1: YES 100 % 94.3 %
Q2: YES 100 % 96.8 %
Q3: NO 100 % 100 %

D. Posterior Formulation
Similar to [19], we formalize p(θ|D) for every θ ∈ Θ as:

p(θ|D) ∝ p(D|θ)p(θ) =
∏
(x,z̃)

p(z̃|x; θ)p(θ) where x ∈ D and z̃ is generated using Algorithm 1

=
∏
(x,z̃)

N (z̃|fW (x), γ−1)N (W |fη(ξ), λ−1)Gamma(γ|a, b)Gamma(λ|a′, b′).

Note that θ consists in fact of network parameters W ∼ fη and scaling parameters γ and λ. For notational simplicity, we used
before the shorthands θ ∼ fη . The parameters γ and λ are initially sampled from a Gamma distribution and updated as part of
the training. In our experiments, we set the hyper-parameters of the Gamma distributions a and b to 1.0 and 0.1, and a′ and b′

to 1.0.

E. `2-norm an Upper Bound of `∞-norm
Given x = (x1, ..., xn) ∈ Rn, ‖x‖∞ = maxi |xi| and ‖x‖2 =

√∑n
i=1 x

2
i . If we let |xj | := maxi |xi|, given that

|xj |2 = x2j ≤
∑n
i=1 x

2
i , it follows that ‖x‖∞ ≤ ‖x‖2. Hence, if ‖x‖2 ≤ εattack, then we have ‖x‖∞ ≤ εattack.

F. Discussion
Here, we discuss the choices pertaining to the design of our approach and their limitations.

Recognition Network. As noted in [17], the Gaussian prior assumption in VAEs is too restrictive to generate meaningful
enough latent codes [37]. Thus, to produce informative latent codes, we use SVGD to learn the parameters of the encoder E.
SVGD maintains a set of M model instances. As an ensemble method, SVGD inherits the shortcomings of ensemble models
most notably in space/time complexity for large M . Thus, instead of maintaining 2 ∗M model instances, we maintain only
one recognition network fη which learns to mimic the sampling dynamics of SVGD although it diverges a bit sometimes.

Latent Noise Level. The changes to the original inputs we perturb are captured by our reconstruction loss — bounded
by εattack (see Equation 5) — which measures the imperceptibility of our adversarial perturbations in the input space. To
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get a sense of the amount of latent noise we inject to the clean codes z1, ..., zM , we compute the marginals of the clean and
perturbed latent codes. As shown in Figure 6, the marginal distributions overlap relatively well. This means that the latent
noise level is actually small.

(a) MNIST (b) CelebA (c) SVHN (d) SNLI

Figure 6: Marginal distributions of clean (blue) and perturbed (red) latent codes over few minibatches.

Semantics Preservation (Text). To construct adversarial text, we experiment with three architecture designs for the
decoder pφ: (i.) a transpose CNN, (ii.) a language model, and (iii.) the decoder of a pre-trained ARAE model [36]. The
transpose CNN generates more legible text than the other two designs although we notice sometimes some changes in meaning
in the generated adversarial examples. Similar to [38], a sizeable number of the examples we generate are not adversarial (see
Table 9 for some examples). Adversarial text generation is challenging in that small perturbations in the latent codes can go
unnoticed at generation whereas high noise levels can render the outputs nonsensical. To produce adversarial sentences that
faithfully preserve the meaning of the inputs, we need good sentence generators, like GPT [29], trained on large corpora. In
our experiments, we consider only a vocabulary of size 10,000 words and sentences of length no more than 10 words to align
our evaluation with the experimental choices of [38].
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G. Adversarial Examples

G.1. Adversarial Images: CelebA

Here, we provide few random samples of non-targeted adversarial examples we generate with our approach on the CelebA
dataset as well as the clean reconstructions.

Table 5: CelebA samples, their clean reconstructions, and adversarial examples.

INPUTS

CLEAN

RECON-
STRUCTIONS

ADVERSARIAL

EXAMPLES
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G.2. Adversarial Images: SVHN

Here, we provide few random samples of non-targeted adversarial examples we generate with our approach on the SVHN
dataset as well as the clean reconstructions.

Table 6: SVHN. Images in red boxes are all adversarial.

INPUTS

CLEAN

RECON-
STRUCTIONS

ADVERSARIAL

EXAMPLES
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G.3. Adversarial Images: MNIST

Here, we provide few random samples of non-targeted adversarial examples we generate with our approach on the MNIST
dataset as well as the clean reconstructions. Both the reconstructed and the adversarial images look realistic and semantically
correct although we notice some artifacts on the latter. Basic Iterative Methods [22], among other adversarial attacks, also
suffer from this. Note that, however, in our case the marginal distributions of the latent codes of the inputs and their perturbed
versions overlap quite well as illustrated in Figure 6.

Table 7: MNIST. Images in red boxes are all adversarial.

INPUTS

CLEAN

RECON-
STRUCTION

ADVERSARIAL

EXAMPLES

G.4. Adversarial Text: SNLI
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Table 8: Examples of adversarially generated hypotheses with the true premises kept unchanged.

TRUE INPUT 1
P: A white dog is running through the snow.
H: A CAT STALKING THROUGH THE SNOW.
Label: CONTRADICTION

ADVERSARY H’: A CAT HOPS IN THE SNOW. Label: NEUTRAL

TRUE INPUT 2
P: Three dogs are searching for something outside.
H: THERE ARE FOUR DOGS.
Label: CONTRADICTION

ADVERSARY H’: THERE ARE FIVE DOGS. Label: NEUTRAL

TRUE INPUT 3
P: A man waterskis while attached to a parachute.
H: A BULLDOZER KNOCKS DOWN A HOUSE.
Label: CONTRADICTION

ADVERSARY H’: A BULLDOZER KNOCKS DOWN A CAGE. Label: ENTAILMENT

TRUE INPUT 4
P: A little girl playing with flowers.
H: A LITTLE GIRL PLAYING WITH A BALL.
Label: CONTRADICTION

ADVERSARY H’: A LITTLE GIRL RUNNING WITH A BALL. Label: NEUTRAL

TRUE INPUT 5
P: People stand in front of a chalkboard.
H: PEOPLE STAND OUTSIDE A PHOTOGRAPHY STORE.
Label: CONTRADICTION

ADVERSARY H’: PEOPLE STAND IN FRONT OF A WORKSHOP. Label: NEUTRAL

TRUE INPUT 6
P: Musician entertaining his audience.
H: THE WOMAN PLAYED THE TRUMPET.
Label: CONTRADICTION

ADVERSARY
H’: THE WOMAN PLAYED THE DRUMS. Label: ENTAILMENT

TRUE INPUT 7
P: A kid on a slip and slide.
H: A SMALL CHILD IS INSIDE EATING THEIR DINNER.
Label: CONTRADICTION

ADVERSARY H’: A SMALL CHILD IS EATING THEIR DINNER. Label: ENTAILMENT

TRUE INPUT 8
P: A deer jumping over a fence.
H: A DEER LAYING IN THE GRASS. Label: CONTRADICTION

ADVERSARY
H’: A PONY LAYING IN THE GRASS.
Label: ENTAILMENT

TRUE INPUT 9
P: Two vendors are on a curb selling balloons.
H: THREE PEOPLE SELL LEMONADE BY THE ROAD SIDE.
Label: CONTRADICTION

ADVERSARY
H’: THREE PEOPLE SELL ARTWORK BY THE ROAD SIDE.
Label: ENTAILMENT
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Table 9: Misses. Some generated examples deemed adversarial by our method that are not.

TRUE INPUT 1
P: A man is operating some type of a vessel.
H: A DOG IN KENNEL.
Label: CONTRADICTION

GENERATED H’: A DOG IN DISGUISE. Label: CONTRADICTION

TRUE INPUT 2
P: A skier.
H: SOMEONE IS SKIING.
Label: ENTAILMENT

GENERATED H’: MAN IS SKIING. Label: NEUTRAL

TRUE INPUT 3
P: This is a bustling city street.
H: THERE ARE A LOT OF PEOPLE WALKING ALONG.
Label: ENTAILMENT

GENERATED H’: THERE ARE A LOT GIRLS WALKING ALONG. Label: NEUTRAL

TRUE INPUT 4
P: A soldier is looking out of a window.
H: THE PRISONER’S CELL IS WINDOWLESS.
Label: CONTRADICTION

GENERATED H’: THE PRISONER’S HOME IS WINDOWLESS. Label: CONTRADICTION

TRUE INPUT 5
P: Four people sitting on a low cement ledge.
H: THERE ARE FOUR PEOPLE.
Label: ENTAILMENT

GENERATED H’: THERE ARE SEVERAL PEOPLE. Label: NEUTRAL

TRUE INPUT 6
P: Three youngsters shovel a huge pile of snow.
H: CHILDREN WORKING TO CLEAR SNOW.
Label: ENTAILMENT

GENERATED
H’: KIDS WORKING TO CLEAR SNOW. Label: NEUTRAL

TRUE INPUT 7
P: Boys at an amphitheater.
H: BOYS AT A SHOW.
Label: ENTAILMENT

GENERATED H’: BOYS IN A SHOW. Label: NEUTRAL

TRUE INPUT 8
P: Male child holding a yellow balloon.
H: BOY HOLDING BIG BALLOON. Label: NEUTRAL

GENERATED
H’: BOY HOLDING LARGE BALLOON.
Label: NEUTRAL

TRUE INPUT 9
P: Women in their swimsuits sunbathe on the sand.
H: WOMEN UNDER THE SUN ON THE SAND.
Label: ENTAILMENT

GENERATED
H’: FAMILY UNDER THE SUN ON THE SAND.
Label: NEUTRAL
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H. Experimental Settings

Table 10: Model Configurations + SNLI Classifier + Hyper-parameters.

NAME CONFIGURATION

RECOGNITION NETWORKS fη
INPUT DIM: 50,

HIDDEN LAYERS: [60, 70],
OUTPUT DIM: NUM WEIGHTS & BIASES IN θm

MODEL INSTANCES PARTICLES θm

INPUT DIM: 28× 28 (MNIST),
64× 64 (CELEBA),

32× 32 (SVHN), 300 (SNLI)
HIDDEN LAYERS: [40, 40]

OUTPUT DIM (LATENT CODE): 100

FEATURE EXTRACTOR

INPUT DIM: 28× 28× 1 (MNIST), 64× 64× 3 (CELEBA),
32× 32× 3 (SVHN), 10× 100 (SNLI)

HIDDEN LAYERS: [40, 40]
OUTPUT DIM: 28× 28 (MNIST), 64× 64 (CELEBA),

32× 32 (SVHN), 100 (SNLI)

DECODER

TRANSPOSE CNN

FOR CELEBA & SVHN: [FILTERS: 64, STRIDE: 2,
KERNEL: 5]× 3

FOR SNLI: [FILTERS: 64, STRIDE: 1,
KERNEL: 5]× 3

LANGUAGE

MODEL
VOCABULARY SIZE: 11,000 WORDS

MAX SENTENCE LENGTH: 10 WORDS

SNLI CLASSIFIER INPUT DIM: 200, HIDDEN LAYERS: [100, 100, 100], OUTPUT DIM: 3

LEARNING RATES α = 10−2 AND β = 10−3

MORE SETTINGS BATCH SIZE: 64, INNER-UPDATES: 3, TRAINING EPOCHS: 1000, M = 5

I. Related Work
Manifold Learning. VAEs are generally used to learn manifolds [35, 11, 14] by maximizing the ELBO of the data

log-likelihood [1, 7]. Optimizing the ELBO entails reparameterizing the encoder to a Gaussian distribution [20]. This
reparameterization is, however, restrictive [17] as it may lead to learning poorly the manifold of the data [37]. To alleviate this
issue, we use SVGD. While our approach and [28] may look similar, we use Bayesian inference which is more principled than
dropout [15].
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Adversarial Examples. Studies in adversarial deep learning [3, 4, 22, 12] can be categorized into two groups. The first
group [4, 6, 27] proposes to generate adversarial examples directly in the input space of the source inputs by distorting,
occluding or changing illumination in images to cause changes in classification. The second group [33, 38], where our work
belongs, uses generative models to search for adversarial examples in the dense and continuous representations of the data
rather than in its input space.

Adversarial Images [33] propose to construct unrestricted adversarial examples by training a conditional GAN that
constrains the search region for a latent code z′ in the neighborhood of a target z. [38] use also a GAN to map input images to
a latent space where they conduct their search for adversarial examples. To our knowledge, these studies are the closest to ours.
Unlike in [33, 38], however, our adversarial perturbations are learned. Moreover, we do not restrict the search for adversarial
examples to uniformly-bounded regions. In contrast also to [33] and [38], where the search for adversarial examples is iterative
and decoupled from the training of the GANs, our method is end-to-end. Lastly, by capturing the uncertainty induced by
embedding the data, we generate more realistic adversarial examples.

Adversarial Text: Previous studies on adversarial text generation [36, 16, 2, 24] perform word erasures and replacements
directly in the input space using domain-specific rules or heuristics, or they require manual curation. Similar to us, [38]
propose to search for textual adversarial examples in the latent representation of the data. However, in addition to the
differences aforementioned for images, the search for adversarial examples is handled in our case by an efficient gradient-based
optimization method.
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