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Abstract

Recent advances in attention-based networks and fol-
lowing the success in advancing natural language process-
ing and understanding have shown that Vision Transform-
ers (ViTs) are expected to eventually replace traditional
convolutional neural networks (CNNs). They have already
shown to achieve state-of-the-art performance on most im-
age classification tasks. While most CNNs have been shown
to be vulnerable against adversarial examples, the same
cannot be said for ViTs. This paper explores the area of
unrestricted perturbations, which semantically manipulate
image-based descriptors to generate naturalistic adversar-
ial examples, and the robustness of Vision Transformers to
these adversarial examples. We show that these types of ad-
versarial attacks are effective against both ViTs alone and
a combination of ViTs and CNNs used in conjunction with
each other.

1. Introduction
For most deep learning tasks that include images or other

visual media, convolutional neural networks are known
have become a model choice [14, 17] while deep learn-
ing tasks for textual data usually use self-attention based
architectures [22]. Based on the success of transformers
and attention-based models in the field of natural language
processing, there have been numerous attempts to use self-
attention methods as a standalone [19] or by combining
them with CNNs [24, 4] for a variety of image process-
ing tasks. Dosovitskiy et al. [9] particularly, split im-
ages into patches and treated those patches the same way
as tokens are treated in NLP applications by feeding them
directly to the Transformer. The results showed that the
Transformer itself is capable of competing with CNNs on
image classification tasks. Since then, Vision Transform-
ers (ViTs) have been adapted to be used in various visual
tasks and are known to show equal or better performance
that most convolutional neural networks or recurrent neural
networks (RNNs) [29, 7]. The training in [9] is also unique

to an extent since they first trained the Transformer on the
ImageNet-21K dataset before training on a smaller dataset
to achieve state-of-the-art accuracy on ImageNet, CIFAR-
10 and CIFAR-100.

With the advancements and the increasing number of ap-
plications where ViTs are being used [6, 2], there are un-
certainties on their robustness against adversarial attacks.
It has been previously documented that CNNs are vulnera-
ble to adversarial examples [5, 16, 25], harmless input im-
ages with small perturbations added which usually causes
the network to incorrectly classify the image with high con-
fidence.

There are a variety of approaches an attacker can use to
generate adversarial examples [23, 25, 12]. Most of these
are ”restricted” in nature, that is, they search for adver-
sarial perturbations within a bounded ε space in order to
preserve their photorealism. However, previous works [13]
have shown that the ε space cannot be considered a viable
metric to judge visual similarity between adversarial and
real images. Bhattad et al. [3] proposed unrestricted attack
strategies which explicitly manipulated semantic visual rep-
resentations to generate naturalistic adversarial examples.
These examples are quite distant from the original image in
the ε space, and are created by adaptively choosing loca-
tions in the images and producing substantial perturbations
by changing colors or textures.

In this work, we examine the robustness of ViTs against
unrestricted adversarial perturbations on image classifica-
tion tasks and make comparisons with CNN benchmarks.
In particular, we make use of the cADV attack proposed in
[3] for our experiments and port a similar methodology to-
wards the ColTran proposed in [15]. We also illustrate the
robustness of ViTs and hybrid models of CNNs and ViTs
in a white-box attack setting against these semantically ma-
nipulated adversarial examples.

2. Related Work
Transformers [22] and other attention-based architec-

tures have been able to achieve remarkable performance on
many important Natural Language Processing (NLP) tasks.
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They have been widely studied from an adversarial perspec-
tive in the NLP domain [28], and have usually shown better
robustness against conventional models. [21] analyzed the
complex relationship between self-attention layers and pro-
posed a robustness verification methodology for Transform-
ers. However, due the discrete nature of NLP models, these
works focus on discrete perturbations which differ signif-
icantly from the continuous imperceptible perturbations in
computer vision tasks. [20] studied the effects of adversar-
ial examples with restricted perturbations on Vision Trans-
formers to some extent.

We also look at some of the previous works on the ex-
isting unrestricted and semantic adversarial examples. Xiao
et al. [25] proposed the spatial distortion of pixels within
an image to create adversarial examples. While these did
produce natural-looking images, it did not take the seman-
tics of the image into account. There have been previous
attempts to generate adversarial perturbations by changing
the hue and saturation randomly [11] but the images turned
out to be unrealistic.

3. Methodology
We begin by briefly reviewing the architectures of the

models that were included in our experiments. These in-
clude Vision Transformers (ViTs) and convolutional neu-
ral network (CNN) models. We then take a look at the ro-
bustness of the aforementioned models against unrestricted
and semantically manipulated adversarial perturbations in a
white-box setting. Our attack majorly uses the colorization
attack [3] to produce adversarial examples which could be
misclassified. Since the attack methodology was configured
for confusing only CNN-based models, we also ported the
methodology to work on a conditional variant of the Axial
Transformer [10], known as ColTran. For brevity, we do
not add a detailed algorithm in this paper but would be soon
updating it here 1.

3.1. Model Architectures

We consider the two major types of Visual Transformers,
which include the original Vision Transformer as well as the
hybrid model of CNN and ViT also proposed in the same
paper [9].

Vision Transformer (ViT) Initially proposed by [9],
a ViT follows the design methodology of a conventional
Transformer [22] used in NLP tasks. A 2D image x ∈
RH×W×C , where C is the number of color channels, is di-
vided into a sequence of N flattened patches where N =
H.W
k2 . For further support, each of the patches are encoded

into embeddings using a simple convolutional layer with
stride k × k. Drawing inspiration from BERT [8], a token

1https://github.com/rajatsahay/unrestricted-
attacks-vit/

is added along with positional embeddings for the classi-
fication process. For the purposes of our experiments we
consider ViT-S/16, ViT-B/16 and ViT-L/16 which are pre-
trained on ImageNet-21k and fine-tuned on ImageNet-1k.
The ’S’, ’L’ and ’B’ stand for ’Small’, ’Large’ and ’Base’
while 16 denotes the number of patches the image is divided
into. These are able to achieve competitively comparable
results with traditional CNNs.

Combined CNN and ViT (CNN-ViT) We would also
be using another architecture that was proposed in [9] which
creates a hybrid between a convolutional encoder and ViTs.
Unlike the traditional ViT architecture where patches of the
original image are provided directly to the ViT as input, the
patches here are extracted from a feature map generated by
a CNN. We investigate semantically manipulated adversar-
ial perturbations on the ViT-B/16-Res, where a ResNet50 is
used to get the feature maps.

3.2. Semantic Unrestricted Adversarial Attack

We assume a white-box attack setting for the purposes of
our experiments. This means that the adversary has knowl-
edge of the trained parameters as well as the models that
make up the ensemble defense. The aim would be to craft
an adversarial example xadv from xwith unrestricted adver-
sarial perturbations which is misclassified by all members
of the ensemble.

The goal of the attack is to adversarially color an image
using a pretrained colorization model. Similar to the origi-
nal experiment, we also use the model proposed by Zhang
et al. [26, 27] for this paper. Unlike most conventional
attacks, which tend to generate minimized high-frequency
perturbations to make them invisible to the human eye, this
network is used to introduce smooth and consistent adver-
sarial noise into the image which have a large magnitude
and keep retain the photorealism of the image. The inputs
consist of the L channel of the image in the CIELAB color
space XL = RH×W×1, the input hints, which provide the
network with the ground truth color patches to guide col-
orization Xab = RH×W×2 and the binary mask which in-
dicates the spatial location of those patchesM ∈ BH×W×1.
As with [3], we also display control over the colorization by
clustering the ground truth AB space of the image using k-
Means and sampling hints from the clusters with the lowest
entropy.

The Projected Gradient Descent (PGD) attack [18] itera-
tively computes Equation 1 by taking gradient ascent:

x̄adv = xadv + ε ∗ sign(TG(xadv)) (1)

In this case, the initial value of x̄adv is the same as the input
given to the network. ε is the step-size for the attack. The
function TG(xadv) can be defined as

TG(xadv) = ψv �
∂L

∂xadv
(2)
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Here, L can be considered as the loss of the targeted Vi-
sion Transformer. Similar to the cADV method, we use a
Colorization Transformer known as ColTran [15] to gener-
ate colours with adversarial perturbations. A ColTran con-
sists of three major parts, the ColTran colorizer, an auto-
regressive, self-attention based conditional Axial Trans-
former [10] which downsamples images and produces a low
resolution coarse, pixel-by-pixel colorization and an auxil-
iary parallel color model for conditioning and regularizing
as well as learning richer representations. In addition, there
are also color and spatial upsampling models. In this case,
we would be minimizing the targeted adversarial loss di-
rectly. When given a context representation c ∈ RH×W×D,
the Conditional Layer Norm would take a normalized input
and globally scale it using learnable vectors. We aggregate c
into a one-dimensional representation using spatial pooling
and then apply a linear projection to c̄ to predict the learn-
able vectors in turn. While this does make us lose some
control over the extent of colorization, with a sufficiently
small value of ε combined with the learnable vectors, the
adversarial image still manages to retain photorealism. L
can be formulated as

L =

H∏
i=1

W∏
j=1

Jloss(xadv, c̄g; t) (3)

Here, Jloss is the loss of ColTran as defined in [15] and t
is the target class. We use � to signify the element-wise
Hadamard product in all our equations. ψv is the self-
attention map associated with the transformer. ψv can be
computed using self-attention roll-out [1] as

ψv =

[
nl∏
l=1

(
nh∑
i=1

(0.5W
(att)
l,i + 0.5I)

)]
� x (4)

Here, x, nh and nl are the input image matrix, the number
of attention heads and layers in the transformer respectively.
W

(att)
l,i is the weight attention matrix in each head and I is

the identity matrix. The attention values obtained from dif-
ferent attention heads in the same layer are averaged while
those in different layers are recursively multiplied.

To further demonstrate the generality of our attack ap-
proach, we also carry out a similar targeted attack in a
white-box setting on a hybrid model of both ViTs and
CNNs. Unlike conventional attack strategies, where the fo-
cus is on optimizing against a singular model, we propose
to break all models in the ensemble. In this case, we gen-
erate perturbations that directly attack the CNN (ResNet50)
as well as the Transformer (ViT-B/16). We use the cADV
colorization scheme to attack the CNN while the ColTran-
based colorization scheme to attack the transformer. Similar
to Equation 1, our attack would be iteratively carried out. In

this case, the value of TG(xadv) could be defined as

TG(xadv) =

(
αc

∂Lc

∂xadv

)
+

(
αvψv �

∂Lv

∂xadv

)
(5)

Equation 5 is majorly made up of 2 parts. The second part
is the same as Equation 2 and follows the same process.
The first part of the equation is where the colorization attack
defined in previous works is used. Lc is the loss of the CNN
used in the ensemble. Since the hints provide the patches
which are responsible for the colorization as well as those
from the feature maps to the ViT, and the mask provides the
spatial location, we are able to exercise a suitable level of
control over the colorization process of both models in the
ensemble by varying the input hints (Xab) and mask (M).
The updated versions can be formulated as follows

X̄ab, M̄ = argmin
Xab,M

Lc(R(C(x,Xab,M ; θ)), t) (6)

Here, C is the colorization network by Zhang et al. [26], R
is the network in the ensemble (a ResNet50 in our case)
and t is the target class. αc and αv can be considered
as weighting models to balance the emphasis on different
models. They can be considered as hyperparameters and
can be changed based on the types of ViTs or CNNs in the
ensemble.

3.3. Implementation Details

We use both ViT-B/16 as well as ViT-L/16 as the Vision
Transformers for image classification. For the ensemble of
CNN+ViT, we use a R50+ViT-B/16 model. While the origi-
nal ResNet50 has [3, 4, 6, 3] blocks each of which reduce the
resolution of the image by a factor if two; with the ResNet
stem, the resultant would be a patch size of (1, 1) and the
ViT-B/16 model cannot be realized anymore. For that rea-
son, [3, 4, 9] blocks are used with the R50+ViT-B/16 hybrid.
We were able to obtain pre-trained models of the Trans-
formers as well as ColTran from their respective reposito-
ries [9, 15].

4. Experimental Results
In these experiments, we study the robustness of ViT and

hybrid ViT+CNN models under a white-box, targeted attack
settings. We present the results on the above models in both,
qualitative as well as a quantitative fashion. The quantita-
tive results are described in Section 4.3. We randomly sam-
pled images from different classes in ImageNet which were
predicted correctly before perturbations and misclassified
after adversarial perturbations. We carry out experiments in
a targeted as well as an untargeted fashion.

4.1. Individual Attack

This attack methodology defines the adversarial attack
on a singular Vision Transformer on its own. The loss and
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Figure 1. Unrestricted adversarial attack on Vision Transformers.
The first row denotes the image, the second row denotes the image
in a targeted attack (with the ground truth being Golf Cart and
the third row denotes the prediction by the ViT with untargeted
adversarial perturbations.

adversarial perturbations are computed using Equation 2 for
this attack. Figure 1 shows interesting properties of the ad-
versarial perturbations that were generated by the ColTran.
We observe that the perturbations are of relatively lower
frequencies, uniform and smooth in nature, which is in
contrast to most conventional adversarial attacks generat-
ing high frequency perturbations. This phenomenon can be
explained by the fact that even though the colorizer in the
ColTran while produces coarse perturbations when adver-
sarially trained, the colour and spatial upsampling networks
remove the coarseness while keeping the image far from the
original image in the ε space. The ψv that was computed in
Equation 4 also takes into account the attention flow of each
layer of the Transformer to the next layer, including the ef-
fect of skip connections.

4.2. Hybrid Attack

This attack methodology defines the adversarial attack
on a hybrid of a CNN and ViT. Figure 2 shows that the
generated image has similar properties as the ones gener-
ated in Section 4.1. The generated adversarial perturbations
are smooth and bring the image far from the original image
in the ε space, preserving the naturalistic look at the same
time.

4.3. Quantitative Results

We present the results of the attack with different step
sizes in Table 4.3. For the quantitative results, we use 4
different ensembles of models to ensure the generality of
our approach. We use the ViT-S/16, ViT-B/16, ViT-L/16

Figure 2. Unrestricted adversarial attack on a hybrid CNN+ViT
model. The first row denotes the image, the second row denotes
the image in a targeted attack (with the ground truth being Golf
Cart and the third row denotes the prediction by the model with
untargeted adversarial perturbations.

Model Clean Acc. Attack Success
ViT-S/16 77.6 92.60
ViT-B/16 75.7 93.14
ViT-L/16 79.2 91.97
ViT-B/16-Res 84.0 90.02

Table 1. Quantitative Results. Attack success is defined by the %
number of misclassifications in ImageNet. we use the Individual
Attack for the first three and the Hybrid Attack for ViT-B/16-Res.

and ViT-B/16-Res which is a R50+ViT-B/16 model. Ini-
tial qualitative comparisons over a range of color changes
reveal that adversarial examples with a larger color change
show more robustness against adversarial defenses. How-
ever, these large color changes cause the image to lose its
sense of photorealism. We intend to conduct more extensive
studies which would be able to quantify realism in images
based on human perception.

5. Conclusion

Our proposed approach extends previous works on col-
orization and generating low-frequency adversarial pertur-
bations to Vision Transformers (ViTs). These semantic at-
tacks shed light on the role of colors in influencing the clas-
sification prediction by ViTs. Furthermore, we also demon-
strate that these attacks are successful on hybrid CNN+ViT
models. We hope that these methods encourage future stud-
ies on more sophisticated defenses and improving the ro-
bustness of ViTs against unbounded adversarial attacks.
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