
On the Benefits of Defining Vicinal Distributions in Latent Space

Puneet Mangla , Vedant Singh, Shreyas Havaldar & Vineeth N Balasubramanian
Department of Computer Science, IIT Hyderabad, India, 502285

{cs17btech11029, cs18btech11047, cs18btech11042, vineethnb}@iith.ac.in

Abstract

The vicinal risk minimization (VRM) principle is an em-
pirical risk minimization (ERM) variant that replaces Dirac
masses with vicinal functions. Mixup Training (MT), a pop-
ular choice of vicinal distribution, improves generalization
performance of models by introducing globally linear be-
havior in between training examples. Apart from general-
ization, recent works have shown that mixup trained mod-
els are relatively robust to input perturbations/corruptions
and at same time are calibrated better than their non-
mixup counterparts. In this work, we investigate the ben-
efits of defining these vicinal distributions like mixup in la-
tent space of generative models rather than in input space
itself. We propose a new approach - VarMixup (Variational
Mixup) - to better sample mixup images by using the la-
tent manifold underlying the data. Our empirical studies
on CIFAR-10, CIFAR-100 and Tiny-ImageNet demonstrates
that models trained by performing mixup in the latent man-
ifold learned by VAEs are inherently more robust to vari-
ous input corruptions and are significantly better calibrated
than vanilla mixup.

1. Introduction
In most successful applications, Deep Neural Networks

are trained to minimize the average error over the training
dataset known as the Empirical Risk Minimization (ERM)
principle [28]. However, various empirical and theoret-
ical studies have shown that minimizing Empirical Risk
over training datasets in over-parameterized settings leads
to their memorization and thus poor generalization on ex-
amples just outside the training distribution. To mitigate
this problem of memorization in over-parameterized neural
networks, Vicinal Risk Minimization (VRM) was proposed
which essentially chooses to train networks on similar but
different examples to the training data. This technique more
popularly known as data augmentation [22], requires one to
define a vicinity or neighbourhood around each training ex-
ample (eg. in terms of brightness, contrast, imperceptible
noise, etc.). Once defined, more examples can be sampled

from their vicinity to enlarge the support of training distri-
bution.

One of the popular choices to create the vicinal distribu-
tion is Mixup. Mixup Training (MT) [34] has emerged as a
popular technique to train models for better generalisation
in the last couple of years. Recent works have also shown
that the idea of Mixup and Mixup training can be leveraged
during inference [20] and in many existing techniques like
data augmentation [12], adversarial training [16], etc. to
improve the robustness of models to various input perturba-
tions [25, 31] and corruptions [12]. Other efforts on Mixup
[26] have shown that Mixup-trained networks are signif-
icantly better calibrated and less prone to over-confident
predictions on out-of-distribution than ones trained in the
regular fashion. We mention other recent efforts in area of
mixup and distinguish ourselves from them in the Appendix
A.1.
Although still in its early phase, the above efforts [34, 29,
20, 26] also indicate a trend to viewing Mixup from per-
spectives of robustness and calibration. In this work, we
take another step in this direction and propose a new vici-
nal distribution/sampling technique called VarMixup (Vari-
ational Mixup) to sample better Mixup images during train-
ing to induce robustness as well as improve predictive un-
certainty of models. In particular, we hypothesize that the
latent unfolded manifold underlying the data (through a
generative model, a Variational Autoencoder in our case)
is linear by construction (manifolds unfold the locally lin-
ear structure of a high-dimensional data space), and hence
more suitable for the defining vicinal distributions involving
linear interpolations, such as Mixup. Importantly, we show
that this choice of the distribution for Mixup plays an im-
portant role towards robustness and predictive uncertainty
(Section 3).

2. Background on Vicinal Risk Minimization

We denote a neural network as Fw : Rc×h×w → Rk,
with weight parameters w. Fw takes an image x ∈ Rc×h×w
and outputs logits, F iw(x) for each class i ∈ {1...k}. With-
out loss of generality, we assume the classification task with
L as the standard cross-entropy loss function. pactual de-

1

notes the training data distribution, and the optimal weight
parameter w∗ is obtained by training the network using
standard empirical risk minimization [28], i.e. w∗ =w
E(x,y)∼pactual [L (Fw(x), y)], where y is the true label as-
sociated with input x.

Given the data distribution pactual, a neural network Fw
and loss function L, the expected risk (average of loss func-
tion over pactual) is given by

R(Fw) =

∫
L(Fw(x), y) · dpactual(x, y)

In practice, the true distribution pactual is unknown, and is
approximated by the training dataset D = {(xi, yi)}Ni=1,
which represents the empirical distribution:

pδ(x, y) =
1

N
·
N∑
i=1

δ(x = xi, y = yi)

Here, δ(x = xi, y = yi) is the Dirac delta function centered
at (xi, yi). Using pδ as an estimate to pactual, we define
expected empirical risk as

Rδ(Fw) =
1

N
·
N∑
i=1

L(Fw(xi), yi)

Minimizing Rδ(Fw) to find optimal Fw∗ is typically
termed Empirical Risk Minimization (ERM) [28]. However
overparametrized neural networks can suffer from mem-
orizing, leading to undesirable behavior of network out-
side the training distribution, pδ [32, 25]. Addressing this
concern, [27] and [5] proposed Vicinal Risk Minimization
(VRM), where pactual is approximated by a vicinal distribu-
tion pv , given by

pv(x, y) =
1

N
·
N∑
i=1

v(x, y|xi, yi)

where v is the vicinal distribution that calculates the proba-
bility of a data point (x, y) in the vicinity of other samples
(xi, yi).
Thus, using pv to approximate pactual, expected vicinal risk
is given by

Rv(Fw) =
1

N
·
N∑
i=1

g(Fw,L, xi, yi)

where g(Fw,L, xi, yi) =
∫
L(Fw(x), y) ·

dv(x, y|xi, yi). The superiority of VRM over ERM
has been theoretically as well as empirically verified by
many recent works [19, 4, 9, 33].

Popular examples of vicinal distributions in-
clude: (i) Gaussian Vicinal distribution: Here,
vgaussian(x, y|xi, yi) = N (x − xi, σ

2) · δ(y = yi),
which is equivalent to augmenting the training samples
with Gaussian noise; and (ii) Mixup Vicinal distribu-
tion : Here vmixup(x, y|xi, yi) = 1

n ·
∑N
j=1 Eλ[δ(x =

λ · xi + (1 − λ) · xj , y = λ · yi + (1 − λ) · yj)], where
λ ∼ β(η, η) and η > 0.

3. Our Approach: VarMixup (Variational
Mixup)

In this work, we build on the recent success of using
Mixup as a vicinal distribution by proposing the use of
the latent spaces learned by a generative deep neural net-
work model. The use of generative models such as Varia-
tional Autoencoders (VAEs) [15] to capture the latent space
from which a distribution is generated provides us an un-
folded manifold (the low-dimensional latent space), where
the linearity in between training examples is more readily
observed. Defining vicinal distributions by using neighbors
on this latent manifold, which is more linear in the low-
dimensional space, learned by generative models provides
us more effective linear interpolations than the ones in input
space. We hence leverage such an approach to capture the
induced global linearity in between examples, and define
Mixup vicinal distributions on this latent surface.

To capture the latent manifold of the training data
through a generative model, we opt for a Variational Au-
toencoder (VAE). VAE [15] is an autoencoder which is
trained using Variational Inference, which serves as an im-
plicit regularizer to ensure that the obtained latent space al-
lows us to generate new data from the same distribution as
training data.

We denote the encoding and decoding distribution of
VAE as qφ(z|x) and pθ(x|z) respectively, parametrized by
φ and θ respectively. Given p(z) as the desired prior distri-
bution for encoding, the general VAE objective is given by
the loss function:

LV AE = −γ ·D(qφ(z)‖p(z))
+ Ex∼pactualEz∼qφ(z|x)[log(pθ(x|z))]

(1)

Here, D is any strict divergence, meaning that D(q‖p) ≥ 0
and D(q‖p) = 0 if and only if q = p, and γ > 0 is a scaling
coefficient. The second term in the objective acts as a im-
age reconstruction loss and qφ(z) = Ex∼pactual [qφ(z|x)].
The original VAE [15] uses KL-divergence in Eqn 1. How-
ever, using KL-divergence in Eqn 1 has some shortcom-
ings, as pointed out in [6, 23, 36, 24]. KL-divergence en-
courages the encoding qφ(z|x) to be a random sample from
p(z) for each x, making them uninformative about the in-
put. Also, it is not strong enough a regularizer compared
to the reconstruction loss and tends to overfit data, conse-
quently, learning a qφ(z|x) that has high variance. Both the
aforementioned shortcomings can affect the encoding dis-
tribution by making them uninformative of inputs with high
variance. Since we use VAEs to better capture a linear la-
tent manifold and subsequently define interpolations there,
a bad latent distribution can affect our method significantly.
We hence use a variant Maximum Mean Discrepancy VAE
(MMD-VAE)[36] which uses a MMD Loss [7] instead of
KL-divergence, and hence optimizes the following objec-

2

Figure 1. Illustration of conceptual idea behind VarMixup. We interpolate on the unfolded
manifold, as defined by a generative model (VAE, in our case).

Figure 2. Expected Calibration Error (ECE) [8] of
Mixup, VarMixup and adv-VarMixup trained models.

tive:

LMMD−V AE = γ ·MMD(qφ(z)‖p(z))
+ Ex∼pactualEz∼qφ(z|x)[log(pθ(x|z))]

(2)

A MMD-VAE doesn’t suffer from the aforementioned
shortcomings [36], as it maximizes mutual information be-
tween x and z by matching the distribution over encodings
qφ(z) with prior p(z) only in expectation, rather than for
every input. We hence train an MMD-VAE to characterize
the training distribution more effectively. We now define a
Mixup vicinal distribution in the latent space of the trained
VAE as vV arMixup(z, y|xi, yi)

=
1

n
·
N∑
j=1

Eλ[δ(z = λ · Ez[qφ(z|xi)]

+ (1− λ) · Ez[qφ(z|xj)], y = λ · yi + (1− λ) · yj)]

where λ ∼ β(η, η) and η > 0. Using the above vicinal dis-
tribution, vV arMixup and the MMD-VAE decoder, pθ(x|z),
we construct VarMixup samples as:

x′ = Ex[pθ(x|λ · Ez[qφ(z|xi)] + (1− λ) · Ez[qφ(z|xj)])]
y′ = λ · yi + (1− λ) · yj

From another perspective, one could view our new sam-
pling technique as performing Manifold Mixup [29], how-
ever over the latent space of an MMD-VAE (instead of the
neural network feature space) and using it for sample re-
construction. We compare against Manifold Mixup in our
results to show the improved performance of the learned
generative latent space in our VarMixup. Figure 1 illustrates
the conceptual idea behind VarMixup.

4. Experiments and Results
We now present our experimental studies and results us-

ing our method, VarMixup where we focus explicitly on
the usefulness of our approach on out-of-distribution test
data and addressing predictive uncertainty. We also per-
form several ablation studies in Appendix A.3 to analyze
our approach.
Implementation Details: It has been shown [14] that ad-
versarial training removes irrelevant biases (e.g. texture
biases) in their hidden representations, thus making them
more informative. We hence hypothesize that the consid-
ered VAE, if trained adversarially, will have more informa-
tive latent encoding than its regular equivalent. This would
hence help improve the vicinal distributions like VarMixup.
Empirically, we validate this hypothesis in our subsequent
experiments and use prefix adv- (eg: adv-VarMixup) to
distinguish them from their regular variants. All models
are trained using the Resnet-34 [10] backbone across all
datasets.
Baseline Models: We compare our method, VarMixup,
against Vanilla ERM, Vanilla Mixup [34], Manifold Mixup
[29], l∞ PGD/TRADES adversarial training [18, 35] and
l∞ Interpolated adversarial training [16]. These choice of
baselines include non-VRM variants, mixup variants and
state-of-the-art adversarial techniques. We also compare
against a variant of mixup, which we call Mixup-R where
mixup training is done on MMD-VAE’s reconstructed im-
age space rather than actual image space. Please refer to
Appendix A.2 for more details on training of these base-
lines.
Generalization Performance and Robustness to Out-of-
Distribution shifts We first evaluate the trained models on
their robustness to various common input corruptions [11],
along with their generalization performance on “clean data”

3

Table 1. Robustness to common input corruptions on CIFAR-10-C, CIFAR-100-C and Tiny-Imagenet-C [11] datasets. Best results in bold and second best
underlined. Clean accuracy is reported in parentheses using gray colour. Standard deviations are reported over 10 trials.

Method CIFAR-10-C CIFAR-100-C Tiny-Imagenet-C

AT [18] 73.12 ± 0.31 (85.58 ± 0.14) 45.09 ± 0.31 (60.28 ± 0.13) 15.74 ± 0.36 (22.33 ± 0.16)
TRADES [18] 75.46 ± 0.21 (88.11 ± 0.43) 45.98 ± 0.41 (63.3 ± 0.32) 16.20 ± 0.23 (26.12 ± 0.38)

IAT [16] 81.05 ± 0.42 (89.7 ± 0.33) 50.71 ± 0.25 (62.7 ± 0.21) 18.69 ± 0.45 (18.08 ± 0.34)

ERM 69.29 ± 0.21 (94.5 ± 0.14) 47.3 ± 0.32 (64.5 ± 0.10) 17.34 ± 0.27 (49.96 ± 0.12)
Mixup 74.74 ± 0.34 (95.5 ± 0.35) 52.13 ± 0.43 (76.8 ± 0.41) 21.55 ± 0.37 (53.83 ± 0.17)

Mixup-R 74.27 ± 0.22 (89.88 ± 0.11) 43.54 ± 0.15 (62.24 ± 0.21) 21.34 ± 0.32 (53.5 ± 0.28)
Manifold-Mixup 72.54 ± 0.14 (95.2 ± 0.18) 41.42 ± 0.23 (75.3 ± 0.48) -

VarMixup 82.57 ± 0.42 (93.91 ± 0.45) 52.57 ± 0.39 (73.2 ± 0.44) 24.87 ± 0.32 (50.98 ± 0.11)
adv-VarMixup 82.12 ± 0.46 (92.19 ± 0.32) 54.0 ± 0.41 (72.13 ± 0.34) 25.36 ± 0.21 (50.58 ± 0.23)

(test data without corruptions). We evaluate their robust-
ness on the newer CIFAR-10-C, CIFAR-100-C and Tiny-
Imagenet-C datasets [11]. These datasets contain images,
corrupted with 15 different distortions at 5 severity levels.
We report the mean classification accuracy over all distor-
tions on aforementioned corrupted datasets in Table 1. The
results show that our method - VarMixup/adv-VarMixup
achieves superior performance by a margin of ∼ 2 − 4%
consistently across the datasets. The slight drop in the clean
accuracy of VarMixup models (shown in parentheses in Ta-
ble 1) is due to the tradeoff between robustness and clean
accuracy, which is a common trend observed in robustness
literature.
Calibration: A recent study [26] showed that DNNs
trained with Mixup are significantly better calibrated than
DNNs trained in a regular fashion. Calibration [8] mea-
sures how good softmax scores are as indicators of the ac-
tual likelihood of a correct prediction. We measure the
Expected Calibration Error (ECE) [26, 8] of the proposed
method, following [26]. Figure 2 shows the calibration er-
ror on CIFAR-10 and CIFAR-100 datasets using Mixup,
VarMixup and adv-VarMixup. The figure illustrates that
our VarMixup models are also better calibrated than regular
Mixup.
Local linearity on loss landscapes: [21] showed that the
local linearity of loss landscapes of neural networks is re-
lated to model robustness. The more the loss landscapes are
linear, the more the robustness. To further study this ob-
servation using our method, we analyze the local linearity
of loss landscapes of VarMixup and regular mixup trained
models. Qin et al. [21] defines local linearity at a data-point
x within a neighbourhood B(ε) as γ(ε, x, y) =

max
δ∈B(ε)

|L(Fw(x+δ), y)−L(Fw(x), y)−δTOxL(Fw(x), y)|

Figure 3 shows the average local linear error (over test
set) with increasing L∞ max-perturbation ε on CIFAR-10
and CIFAR-100 datasets. As can be seen, VarMixup/adv-
VarMixup makes the local linear error significantly (× 2)

Figure 3. Local linear error of loss landscapes of models trained on
CIFAR-10/-100 (denoted as C10 and C100)

lesser as compared to regular mixup, thus inducing robust-
ness.

5. Conclusions
In this work, we proposed a Mixup-based vicinal dis-

tribution, VarMixup, which performs linear interpolation
on an unfolded latent manifold where linearity in between
training examples is likely to be preserved by construction.
We show that VarMixup trained models are more robust to
common input corruptions and are better calibrated. Our
work highlights the efficacy of defining vicinal distributions
by using neighbors on unfolded latent manifold rather than
data manifold and we believe that our work can open a dis-
cussion around this notion of robustness and choice of vici-
nal distributions on generative latent spaces.

References
[1] Christopher Beckham, Sina Honari, Vikas Verma, Alex M

Lamb, Farnoosh Ghadiri, R Devon Hjelm, Yoshua Bengio,

4

and Chris Pal. On adversarial mixup resynthesis. In Ad-
vances in Neural Information Processing Systems 32, pages
4346–4357. Curran Associates, Inc., 2019. 6

[2] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems 32, pages 5049–
5059. Curran Associates, Inc., 2019. 6

[3] Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel,
and Arthur Gretton. Demystifying MMD GANs. In Interna-
tional Conference on Learning Representations, 2018. 7

[4] Yilong Cao and Peter I. Rockett. The use of vicinal-risk min-
imization for training decision trees. Appl. Soft Comput.,
31(C), June 2015. 2

[5] Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir
Vapnik. Vicinal risk minimization. In T. K. Leen, T. G. Diet-
terich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 416–422. MIT Press, 2001. 2

[6] Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan,
Prafulla Dhariwal, John Schulman, Ilya Sutskever, and
Pieter Abbeel. Variational lossy autoencoder. CoRR,
abs/1611.02731, 2016. 2

[7] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard
Schölkopf, and Alex J. Smola. A kernel method for the
two-sample-problem. In B. Schölkopf, J. C. Platt, and T.
Hoffman, editors, Advances in Neural Information Process-
ing Systems 19, pages 513–520. MIT Press, 2007. 2

[8] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. On calibration of modern neural networks. CoRR,
abs/1706.04599, 2017. 3, 4

[9] L. Hai-Yan and J. Hua. Vicinal risk minimization based
probability density function estimation algorithm using svm.
In 2010 Third International Conference on Information and
Computing, volume 4, pages 161–164, 2010. 2

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–
778, June 2016. 3

[11] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. Proceedings of the International Conference on Learn-
ing Representations, 2019. 3, 4, 6

[12] Dan Hendrycks*, Norman Mu*, Ekin Dogus Cubuk, Barret
Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Aug-
mix: A simple method to improve robustness and uncertainty
under data shift. In International Conference on Learning
Representations, 2020. 1, 6

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, Günter Klambauer, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a
nash equilibrium. CoRR, abs/1706.08500, 2017. 7

[14] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Adversar-
ial examples are not bugs, they are features. In Advances in
Neural Information Processing Systems 32, pages 125–136.
Curran Associates, Inc., 2019. 3

[15] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. CoRR, abs/1312.6114, 2013. 2

[16] Alex Lamb, Vikas Verma, Juho Kannala, and Yoshua Ben-
gio. Interpolated adversarial training: Achieving robust
neural networks without sacrificing too much accuracy.
AISec’19, 2019. 1, 3, 4, 7

[17] X. Liu, Y. Zou, L. Kong, Z. Diao, J. Yan, J. Wang, S. Li, P.
Jia, and J. You. Data augmentation via latent space interpo-
lation for image classification. In 2018 24th International
Conference on Pattern Recognition (ICPR), Aug. 6

[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. 3, 4, 7

[19] Ji Ni and Peter I. Rockett. Training genetic programming
classifiers by vicinal-risk minimization. Genet. Program.
Evolvable Mach., 16(1):3–25, 2015. 2

[20] Tianyu Pang*, Kun Xu*, and Jun Zhu. Mixup inference:
Better exploiting mixup to defend adversarial attacks. In In-
ternational Conference on Learning Representations, 2020.
1, 6

[21] Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan,
Alhussein Fawzi, Soham De, Robert Stanforth, Pushmeet
Kohli, et al. Adversarial robustness through local lineariza-
tion. arXiv preprint arXiv:1907.02610, 2019. 4

[22] Patrice Y. Simard, Yann A. LeCun, John S. Denker, and
Bernard Victorri. Transformation Invariance in Pattern
Recognition – Tangent Distance and Tangent Propagation.
Springer Berlin Heidelberg, 2012. 1

[23] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. Ladder varia-
tional autoencoders. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’16, page 3745–3753, Red Hook, NY, USA,
2016. Curran Associates Inc. 2

[24] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. Ladder varia-
tional autoencoders. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’16, page 3745–3753, Red Hook, NY, USA,
2016. Curran Associates Inc. 2

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1, 2

[26] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes,
Tanmoy Bhattacharya, and Sarah Michalak. On mixup train-
ing: Improved calibration and predictive uncertainty for deep
neural networks. In Advances in Neural Information Pro-
cessing Systems 32, pages 13888–13899. Curran Associates,
Inc., 2019. 1, 4, 6

[27] Vladimir N. Vapnik. The Nature of Statistical Learning The-
ory. Springer-Verlag, Berlin, Heidelberg, 1995. 2

[28] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-
Interscience, 1998. 1, 2

[29] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Na-
jafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Ben-
gio. Manifold mixup: Better representations by interpolating
hidden states. In Proceedings of the 36th International Con-

5

ference on Machine Learning, pages 6438–6447, 2019. 1, 3,
6

[30] Minghao Xu, Jia yu Zhang, Bingbing Ni, Teng Li, Chengjie
Wang, Qi Tian, and Wenjun Zhang. Adversarial domain
adaptation with domain mixup. ArXiv, abs/1912.01805,
2019. 6

[31] Xiaoyong Yuan, Pan He, Qile Zhu, Rajendra Rana Bhat, and
Xiaolin Li. Adversarial examples: Attacks and defenses for
deep learning. CoRR, abs/1712.07107, 2017. 1

[32] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. ICLR, abs/1611.03530,
2017. 2

[33] Chao Zhang, Min-Hsiu Hsieh, and Dacheng Tao. General-
ization bounds for vicinal risk minimization principle. arXiv
preprint arXiv:1811.04351, 2018. 2

[34] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. CoRR, abs/1710.09412, 2017. 1, 3, 6

[35] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing,
Laurent El Ghaoui, and Michael I. Jordan. Theoretically
principled trade-off between robustness and accuracy. CoRR,
abs/1901.08573, 2019. 3, 7

[36] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae:
Information maximizing variational autoencoders. CoRR,
abs/1706.02262, 2017. 2, 3

A. Appendix
A.1. Related work on Mixup

[34] proposed Mixup, a method to train models on the
convex combination of pairs of examples and their labels.
In other words, it constructs virtual training examples as:
x′ = λ · xi + (1− λ) · xj ; y′ = λ · yi + (1− λ) · yj , where
xi, xj are input vectors; yi, yj are one-hot label encod-
ings and λ is a mixup coefficient, usually sampled from a
β(η, η) distribution. By doing so, it regularizes the network
to behave linearly in between training examples, thus induc-
ing global linearity between them. A recent variant, Mani-
fold Mixup [29], exploits interpolations at hidden represen-
tations, thereby obtaining neural networks with smoother
decision boundaries at different levels of hidden represen-
tations. AugMix [12] mixes up multiple augmented images
and uses a Jensen-Shannon Divergence consistency loss on
them to achieve better robustness to common input corrup-
tions [11]. In semi-supervised learning, MixMatch [2] ob-
tains state-of-the-art results by guessing low-entropy labels
for data-augmented unlabeled examples and mixes labeled
and unlabeled data using Mixup. It has been shown that
apart from better generalization, Mixup also improves the
robustness of models to adversarial perturbations as well.
To further boost this robustness at inference time, Pang et al.
[20] recently proposed a Mixup Inference technique which
performs a mixup of input x with a clean sample xs and
passes the corresponding mixup sample (λ ·x+(1−λ) ·xs)

into the classifier as the processed input. Other efforts re-
lated to Mixup [26] have shown that Mixup-trained net-
works are better calibrated i.e., the predicted softmax scores
are better indicators of the actual likelihood of a correct pre-
diction than DNNs trained in the regular fashion. Addition-
ally, they also observed that mixup-trained DNNs are less
prone to over-confident predictions on out-of-distribution
and random-noise data. None of these efforts however ad-
dress Mixup from a generative latent space, which is the
focus of this work. Efforts such as [20] and [26], in fact,
have inferences that motivate the need to consider a latent
Mixup space to address a model’s robustness and predictive
uncertainty.

From a different perspective, Xu et al. [30] used domain
mixup to improve the generalization ability of models in
domain adaptation. Adversarial Mixup Resynthesis [1] at-
tempted mixing latent codes used by autoencoders through
an arbitrary mixing mechanism that can recombine codes
from different inputs to produce novel examples. This work
however has a different objective and focuses on genera-
tive models in a GAN-like setting, while our work focuses
on robustness and predictive uncertainty. The work by Liu
et al. [17] may be closest to ours in terms of approach
as they use an adversarial autoencoder (AAE) to impose a
uniform distribution on the feature representations. How-
ever, their work deals with improving generalization per-
formance, while ours looks at robustness and predictive un-
certainty, as already stated. Furthermore, we propose a new
method, VarMixup, which focuses on directly exploiting the
manifold learned by a Variational Autoencoder (VAE) (and
do not regularize it unlike previous work) during Mixup and
report improved adversarial robustness. We also present
useful insights into the working of VarMixup (which is lack-
ing in earlier work including [17]), thus making our contri-
butions unique and more complete.

A.2. Baseline Training Details

Here, we report the training details of baselines used for
comparing out approach in Table 1.

1. ERM - Vanilla Empirical Risk Minimization using
Adam optimizer (lr = 1e − 3) for 100 epochs on all
datasets.

2. Mixup - Vanilla Mixup training [34] using Adam op-
timizer (lr = 1e − 3) for 150 epochs on all datasets.
Mixup coefficient is sampled from β(1, 1).

3. Mixup-R - Mixup training on MMD-VAE’s recon-
structed image space [34] using Adam optimizer (lr =
1e − 3) for 150 epochs on all datasets. Mixup coeffi-
cient is sampled from β(1, 1).

4. Manifold Mixup - Manifold Mixup training [29] using
Adam optimizer (lr = 1e − 3) for 150 epochs on all

6

Figure 4. Samples generated by mixup, VarMixup and adv-VarMixup on
CIFAR-10 (Mixup coefficient λ = 0.5).

datasets. Mixup coefficient is sampled from β(2, 2).

5. AT and TRADES - l∞ PGD/TRADES adversarial
training [18, 35] with ε = 8/255 and step-size α =
2/255. Models are trained using Adam optimizer
(lr = 1e− 3) for 250 epochs on all datasets.

6. IAT - l∞ Interpolated adversarial training [16] with
ε = 8/255 and step-size α = 2/255. Interpolation co-
efficient is sampled from β(1, 1). Models are trained
using Adam optimizer (lr = 1e−3) for 350 epochs on
all datasets.

A.3. Ablation Studies

Analyzing VarMixup samples: Figure 4 shows sample
data generated by regular Mixup, VarMixup, and adv-
VarMixup on two images. Although mixup or VarMixup
samples look perceptually similar, they are quite different
at a statistical level. We measure the Frechet Inception
Distance (FID) [13] and Kernel Inception Distance [3] be-
tween regular training data and training data generated by
mixup/VarMixup/ adv-VarMixup. These scores summarize
how similar the two groups are in terms of statistics on
computer vision features of the raw images calculated using
the Inceptionv3 model used for image classification. Lower
scores indicate the two groups of images are more similar,
or have more similar statistics, with a perfect score being
0.0 indicating that the two groups of images are identical.
Figure 5 reports these metrics on CIFAR-10 and CIFAR-
100 respectively. The greater FID and KID scores indicate
that we are adding off-manifold samples (w.r.t. the mani-
fold characterized by training data) to the training using our
approach.
Computational Overhead: We compare the computa-
tional time of our trained models using VarMixup/adv-

Figure 5. FID and KID scores between training set and mixup/VarMixup
generated samples on CIFAR-10 and CIFAR-100

VarMixup with commonly used adversarial training tech-
niques, AT and TRADES. VarMixup, adv-VarMixup, AT
and TRADES take around 3, 5, 8.8 and 15 hours respec-
tively for training. The training time of the MMD-VAE was
also considered here. While already significantly faster than
AT and TRADES, the proposed method will be more scal-
able and time-efficient, if a VAE trained on a dataset such as
ImageNet can be directly used to generate VarMixup sam-
ples for other datasets. This is a typical transfer learning
setting, and we hence study the performance of training
VarMixup models on CIFAR-10 and CIFAR-100 datasets
using MMD-VAE trained on the Tiny-Imagenet dataset. Re-
spectively, VarMixup obtained mean corruption accuracy of
82.0 % and 53.25 % on CIFAR-10-C and CIFAR-100-C
benchmarks, thus making our approach time-efficient and
also scalable.

7

