
Adversarial Variance Attacks: Deeper Insights into Adversarial Machine
Learning through the Eyes of Bias-Variance Impact

Hossein Aboutalebi1, Mohammad Javad Shafiee1

Michelle Karg2, Christian Scharfenberger2

Alexander Wong1

1Waterloo AI Institute, University of Waterloo, Waterloo, Ontario, Canada
2ADC Automotive Distance Control Systems GmbH, Continental, Germany

1{haboutal, mjshafiee, a28wong}@uwaterloo.ca
2{michelle.karg, christian.scharfenberger}@continental-corporation.com

Abstract

Prior studies have unveiled the vulnerability of the deep
neural networks in the context of adversarial machine learn-
ing, leading to great recent attention into this area. One
interesting question that has yet to be fully explored is the
bias-variance relationship of adversarial machine learning,
which can potentially provide deeper insights into this be-
haviour. In this study, we investigate the effect of adversarial
machine learning on the bias and variance of a trained deep
neural network and analyze how adversarial perturbations
can affect the generalization of a network. We derive the
bias-variance trade-off for both classification and regression
applications based on two main loss functions: (i) mean
squared error (MSE), and (ii) cross-entropy. Furthermore,
we perform quantitative analysis with both simulated and
real data to empirically evaluate consistency with the de-
rived bias-variance tradeoffs. Moreover, given these new
theoretical findings, we introduce a new adversarial attack
called Adversarial Variance Attack (AVA) which specifically
targets the variance of the network and causes higher vari-
ance in system response compared with other attacks (e.g.,
PGD).

1. Introduction
Despite of the impressive achievements of deep learn-

ing over the past decade in different fields such as com-
puter vision [7, 10, 11, 17], machine translation [21, 22],
and medicine [3, 4], their vulnerability against adversarial
machine learning brings different concerns regarding their
robustness.

A perturbation ε in a specific direction to the input causes
the model to incorrectly classify the input sample which can
be preformed in both classification [13, 19] or regression

problems [1, 20]. The perturbation ε should be impercepti-
ble by a human eye and as such, the norm of ε is bounded
when a new perturbation is generated. Szegedy et al. in-
troduced this drawback for deep neural networks in their
seminal paper [19]. They observed that the state-of-the-art
deep neural networks act poorly with high confidence when
an imperceptible non-random perturbation is added to the
input image. They attributed this poor behaviour to the po-
tential blind spots in the training of deep neural networks.
Goodfellow et al. [6] argued this poor performance of deep
neural networks on adversarial examples is due to their lin-
ear behavior in high-dimensional spaces. Since then, there
have been several studies introducing different approaches
to generate adversarial perturbation and fool the deep neu-
ral networks [6, 8, 13, 15]. However, Madry et al. [12]
proposed a multi-step attack called the projected gradient
descent (PGD) algorithm which generalizes the prior first-
order adversarial machine learning algorithms and is able to
produce adversarial examples that are harder to learn and to
defeat.

Despite a rich literature developed in the field of adversar-
ial machine learning, model generalization is an important
drawbacks of these techniques. Bias and Variance are one of
the long-standing and well-known procedure to analyze the
generalization and reliability of machine learning models.
The seminal work by Geman et al. [5] showed that while
a model’s variance increases, the model’s bias decreases
monotonically with the increase in the model complexity.
They derived a well-formed decomposition of the bias and
variance of the loss function for the regression learning task.

Although bias-variance trade-off has been used to justify
some aspects of deep neural networks in previous studies,
to the best of authors’ knowledge, the theoretical analysis
around the impact of the adversarial machine learning algo-
rithms on the bias and variance of a deep neural network has
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not been well explored. In this paper, we aim to study the
effect of adversarial machine learning on the bias and vari-
ance of a deep neural network. Here, a new decomposition
of the loss function in a deep neural network is derived in
terms of its bias and variance for both the regression and
classification tasks when the input sample is perturbed by
an adversarial machine learning algorithm. The proposed
theorems illustrate that an adversarial machine learning al-
gorithm can be designed in such a way that attacks a model
by only changing its behaviour in terms of either bias or
variance. As such, the proposed theorems suggest that it is
possible to design more powerful adversarial machine learn-
ing algorithms which are much harder to be detected and
resolved. One interesting idea would be to design adversarial
machine learning methods which only change the model vari-
ance and only make the model unstable in specific cases and
situations. As a result, they might be very hard to identify as
there is not any significant change in the model’s bias which
make them more disastrous. In this paper, we will propose
one such attack called AVA and illustrate its performance
on different datasets. Using our theoretical derivations, we
propose an algorithm which can manipulate the variance of
the network. Later in the experiment section, we illustrate
that the proposed AVA attack can increase the variance more
significantly than other adversarial attacks including CW,
PGD and FGSM. Also, we show that increasing the size
of the network cannot necessarily make it less susceptible
against this attack.

2. Methodology
In this section we illustrate the effect of adversarial ma-

chine learning algorithms on the model’s bias and variance
and derive how the perturbation can change the behaviour
of a model by studying its bias and variance. Here we aim
to study the bias-variance trade-off in deep neural networks
based on two well-known loss functions, MSE loss and cross-
entropy loss. The detailed version of the theorem is in the
Appendix.

2.1. Notation

The detailed information on the notation is in the Ap-
pendix.

2.2. Case I: Regression with MSE Loss

Assume the goal is to estimate the target function
f : X → Y . Each element x ∈ X has dimension |x| = d.
Given the training data, D =

{
(x1, y1), ..., (xm, ym)

}
, a

learner produces a prediction model f̂(x). As such, the
configuration of the parameters in f̂(x) is dependent on the
training data D. Let us also assume the training data D is
accompanied with a natural noise γ such that:

yi = f(xi) + γ (1)

where 1 ≤ i ≤ m with m total number of data samples in D,
and γ is a random variable where E[γ] = 0, and E[γ2] = σ2

γ .
It is worth to note that, we keep this assumption mainly for
the regression task and we will drop it for the classification
problems with cross-entropy loss function for simplicity.
Geman et al. [5] decomposed a MSE loss function in terms
of its bias and variance of a prediction model by Theorem 1.

Theorem 1 For a prediction model f̂(x) trained on the
training data D to estimate the target function f(x) with
MSE loss function, the bias variance trade-off is [5]:

Ex,D,γ
[
(y − f̂(x))2

]
= Ex,D

[(
ED
[
f̂(x)

]
− f(x)

)2]
+

Ex,D
[(
f̂(x)− ED

[
f̂(x)

])2]
+ σ2

γ = Bias[f̂ ] + V ar[f̂ ] + V ar[γ].

(2)

The V ar[γ] is the intrinsic noise of the system. Given (2),
it is possible to break down and decouple the effect of differ-
ent factors on model performance based on the bias, variance
and intrinsic noise in the model. However, (2) does not take
the effect of adversarial perturbation into account. The per-
turbation β(x) added to each data sample x during the test
time aims to increase the loss value of the model. It is as-
sumed that f(x) = f(x+ β(x)), this assumption is to make
sure the added perturbation magnitude is reasonable and
follows the imperceptibility of the adversarial perturbation.

This perturbation can have a great impact on the final
loss which is significantly different from (2). Following,
we propose a new theorem to account for the adversarial
perturbation in deriving bias and variance of a model.

Theorem 2 Assume f̄(x) = ED[f̂(x)] and the target func-
tion is f(x). The bias-variance trade-off for MSE loss func-
tion with a prediction model f̂(x) trained on dataset D with
noise γ in the presence of adversarial perturbation β(x) via
the adversarial algorithm is:

Ex,D,γ
[
(y − f̂(x+ β(x)))2

]
≈

Ex,D[(f(x)− f̄(x)− cx)2] + V ar[γ] + V ar[f̂ ] + Ex,D[c′x]
(3)

where, cx = ∇f̄(x)Tβ(x)

and, c′x = 2
(
f̂(x)− f̄(x)

)((
∇f̂(x)−∇f̄(x)

)T
β(x)

)
(4)

Proof: The proof can be found in the supplementary mate-
rial.

2.3. Case II: Classification with cross-entropy Loss

The notion of bias and variance can be analyzed for the
classification models trained with cross-entropy loss as well.
To this end, followed by the work done in [16, 23] let c be the
number of classes for classification and π̂D(x) ∈ [0, 1]c be
the output of a neural network trained on the training set D.
This function measures the confidence values over classes.
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Let π(x) ∈ [0, 1]c be a one-hot vector encoding ground truth
label that we wish to estimate via π̂. Then cross-entropy loss
can be formulated as:

L(π, π̂) = −Ex,D
[ c∑
i=1

(
πi(x) log π̂i(x)

)]
(5)

where πi(x) refers to ith component of the output vector
π(x). As explained in [23], the loss function in (5) can be
decomposed:

L(π, π̂) = DKL

(
π(x)||π̄(x)

)
+ Ex,D

[
DKL (π̄(x)||π̂(x))

]
(6)

where π̄(x) ∝ exp
(
ED
[

log(π̂(x))
])

. π̄(x), as described
in [23], is the average of log probability after normalization.

Theorem 3 Assume for input x, the ground truth class is
tx. For a cross-entropy loss function, the bias-variance
tradeoff of a prediction model π̂(x) with training data D
for a target function π(x) in the presence of adversarial
algorithm injecting perturbation β(x) to the system is:

L(π, π̂) =Ex,D
[
DKL(π(x)||π̄(x)) +DKL(π̄(x)||π̂(x))

]
+

Ex [cx] + Ex,D
[
c′x
]

(7)

where,

cx = −Ex
[(
∇x log π̄tx(x)

)T
β(x)

]
c′x = −Ex,D

[
c∑
i=1

(
∇xπ̄i(x) log

π̂i(x)

π̄i(x)

)T
β(x)

]
(8)

Proof: The proof can be found in the supplementary mate-
rial.

This derivation is aligned with finding in [16, 23], where
the bias variance decomposition for cross-entropy loss
function is in the form of KL-Divergence. The proposed
theorem leads to the following corollaries,
Corollary I: The maximum expected increase in the bias
of a deep neural network trained with cross-entropy loss is
when the adversarial perturbation is in the direction of cx
in (8).
Corollary II: The maximum expected increase in the
variance of a deep neural network trained with cross-entropy
loss is when the adversarial perturbation is in the direction
of c′x in (8).

2.4. Adversarial Variance Attack (AVA)

Given the derivations provided by Theorem (3), here we
propose a new attack which specifically targets the variance
of the machine learning model in classification tasks so-
called Adversarial Variance Attack (AVA). The details of the
proposed AVA method is described in Algorithm 1. AVA

Algorithm 1: AVA Attack for classification

Data:
{(
x, y(x)

)
|x ∈ D

}
with c distinct classes

Result: x̂ Perturbed image x for model π̂k. Input:
π̂1, ..., π̂k, ..., π̂n, The prediction models
trained on different training set.
ε, The magnitude of perturbation.
x, The input image.
γ, maximum allowed perturbation.

Begin
π̄ = 1

n
Σni=1π̂i

L = DKL
(
π̄(x)||πk(x)

)
x̂ = Πx+γ

(
x+ ε∇xL

)
Return x̂

End

attack starts with a set of prediction model networks with the
same architectures that have been trained with different seeds
on different training data. Then AVA creates an average
model π̄ which is the mean of the output of the predictions
by all models. In the next step, AVA takes the gradient from
the loss function defined as a KL Divergence between π̄ and
the given network πk. Finally, this gradient is projected and
added with step size ε to the input of the network πk. As
AVA requires a set of prediction networks, for training these
networks, we used the same technique used in [23] to split
the training set among them and train each of the network
with the corresponding training set (more details on this part
is in the experiment section). In our experiments, we found
out that using even two networks for AVA is enough for
achieving good results with high variance.

As it will be seen in the experiments, unlike previously
proposed attacks in adversarial machine learning which fo-
cuses mainly on the bias of the model in the predictions, the
variance attack manipulates the variance of the prediction
model and makes it behave unstable when it is trained across
different training datasets. In this regard, as it increases the
variance of the model, detection of this attack becomes more
cumbersome as the model trained on one training set may
have a good performance while the same model trained on a
different datasets may have a poor performance against this
attack. This phenomenon makes the resilience against this
attack harder as multiple replica of same model might be
needed for training and testing to obtain a reliable robustness
against this attack.

3. Experimental Results & Discussion

In this section, we examine the proposed theorems exper-
imentally and illustrate how a deep neural network behaves
facing an adversarial machine learning algorithm based on
its bias and variance. We also analyze the effectiveness
of the proposed variance attack. To this end, we mainly
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Table 1: Evaluation results of different attack on adversar-
ially trained WRN-28 against CIFAR-10 dataset. While
other attacks such as CW and PGD adversarial attacks could
fool the network more and dropped the model accuracy to
higher degree, results show that the proposed AVA attack can
change the behaviour of the targeted deep neural network
more significantly and as such resulted to a higher variance.

Attack Accuracy Variance

FGSM 41.86 8.21
PGD20 36.54 7.30
PGD40 36.50 7.09
CW20 37.46 9.51
CW40 37.52 8.97
AVA 69.11 29.50

Table 2: Evaluation results of competing attacks on adversar-
ially trained WRN-28 based on SVHN dataset. The results
further validate the reported result in Table 1 and show the
effectiveness of the proposed AVA attack in changing the
model’s behaviour.

Attack Accuracy Variance

FGSM 76.72 32.03
PGD20 57.33 18.40
PGD40 58.63 11.53
CW20 57.08 23.06
CW40 58.45 12.73
AVA 62.85 47.86

Table 3: Evaluation results of competing attacks on adver-
sarially trained WRN-28 based on CIFAR-100 dataset.

Attack Accuracy Variance

FGSM 18.71 4.51
PGD20 15.83 2.63
PGD40 15.81 2.49
CW20 16.4 3.03
CW40 16.45 2.92
AVA 33.06 23.42

evaluate the theorem on Wide ResNet (WRN-28-10) [24]
architecture on both real datasets including CIFAR-10 and
CIFAR-100 [9] and simulated data for both classification and
regression tasks. We also study the MobileNetV2 [18] archi-
tecture which is in the supplementary. Most of experiments
are included in the appendix due to the page limit.

3.1. Results

In this section, we study the effect of adversarial machine
learning algorithms and the proposed AVA attack on real

datasets. To this end, we take advantage of adversarial train-
ing techniques to improve the robustness of the examined
models. As mentioned earlier, the main neural network ar-
chitecture used in our study is Wide ResNet architecture
(WRN-28) and we included the results for MobileNetV2
in the supplementary. The proposed method and compet-
ing algorithms are evaluated via three datasets including
CIFAR-10 [9], CIFAR-100 [9] and SVHN [14] datasets.
To measure the bias and variance, we followed the same
approach described in [23]. Two models trained on inde-
pendent subsets of the training data which are obtained via
splitting the training set in half are constructed and the bias
and variance results are reported as an average over 3 of such
random splits.

To further analyze different attacks and evaluate how dif-
ferent adversarial attacks affect the model’s variance, the pro-
posed AVA algorithm is compared with CW [2], FGSM [6],
and PGD [12] adversarial attacks on WRN-28 network archi-
tecture. This network is adversarially trained on CIFAR-10
dataset using Madry PGD-based adversarial training [12].
As seen in Table 1, although other adversarial attacks are
more successful in decreasing the accuracy of the deep neu-
ral network model, their variance is lower than what AVA
algorithm can achieve. Table 1 shows that for CW and PGD
algorithm, as we increase the number of steps in these at-
tacks, both the variance and the accuracy of the network
decreases.

Table 2 depicts a similar experiments performed on
SVHN dataset. Here, the variance is higher for all attacks
compared with CIFAR-10. Again, we can observe a simi-
lar pattern as reported in Table 1. As the number of steps
for the attack increases, the variance decreases. Although
AVA accuracy drop is lower than CW and PGD, its variance
increase is the highest among all the other attacks. Similar
experiments for CIFAR-100 dataset is reported in Table 3. In
Table 3, the accuracy of the model has dropped more signifi-
cantly compared with other two previous dataset. We once
again observe that AVA is more successful in increasing the
variance while other attack models drop the accuracy higher
than AVA.

The reported results of the proposed AVA attack further
confirms Theorem 3 and it shows that AVA attack is effective
in increasing the variance of the network more significantly
than other well-know adversarial attacks.

4. Conclusion
In this paper we studied the effect of adversarial ma-

chine learning on a model’s bias and variance. We proposed
a new set of theorems which decompose the effect of ad-
versarial perturbations on machine learning models trained
with two well-known loss functions. The new derivations
showed when to expect the maximum increase in the bias
and variance of the model facing adversarial machine lean-
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ings. While the theorems verify the previous findings in this
field which the model is vulnerable in the opposite direction
of gradient of loss function, the proposed theorems can quan-
tify what is the best direction for adversarial perturbation to
maximize the effect. The proposed theorems can help us to
better understand the effect of adversarial machine learning
algorithms in the field of deep neural networks.
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