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Abstract

Deep neural network (DNN) accelerators received con-
siderable attention in past years due to saved energy com-
pared to mainstream hardware. Low-voltage operation of
DNN accelerators allows to further reduce energy con-
sumption significantly, however, causes bit-level failures in
the memory storing the quantized DNN weights. In this
paper, we show that a combination of robust fixed-point
quantization, weight clipping, and random bit error train-
ing (RANDBET) improves robustness against random bit
errors in (quantized) DNN weights significantly. This leads
to high energy savings from both low-voltage operation as
well as low-precision quantization. Furthermore, our ap-
proach generalizes across operating voltages and acceler-
ators, as demonstrated on bit errors from profiled SRAM
arrays. Without losing more than 1% in accuracy, we can
reduce energy consumption on CIFARI0 by 20% for a 8-bit
quantized DNN. Higher energy savings of, e.g., 30%, are
possible at the cost of 2.5% accuracy, even for 4-bit DNNs.

1. Introduction

Energy-efficiency is important to lower carbon-dioxide
emissions of deep neural network (DNN) driven applica-
tions and to enable applications in edge computing. DNN
accelerators, i.e., specialized hardware for inference, re-
duce energy consumption alongside cost and space com-
pared to mainstream GPUs. These accelerators generally
feature on-chip SRAM used as scratchpads, e.g., to store
DNN weights. Data access/movement constitutes a dom-
inant component of accelerator energy consumption [16].
Reduced precision [9] is one way to reduce energy con-
sumption at the cost of approximate computing [13]. Sim-
ilarly, recent DNN accelerators [12, 6, 1] lower memory
supply voltage to increase energy efficiency since dynamic
power varies quadratically with voltage. However, operat-
ing at very low voltages causes reliability issues in SRAMs
in the form of bit-level failures [3, 4] with direct impact
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Figure 1: Energy and Low-Voltage Operation. Average
bit error rate p (blue, left y-axis) from 32 14nm SRAM ar-
rays of size 512x 64 from [1] and energy (red, right y-axis)
vs voltage (x-axis). Voltage is normalized by Vi,;,, the min-
imal measured voltage for error-free operation. Reducing
voltage leads to exponentially increasing bit error rates.

on the stored DNN weights. The rate p of these errors in-
creases exponentially with lowered voltage, causing devas-
tating drops in DNN accuracy. In this paper, we aim to
enable very low-voltage operation of DNN accelerators by
developing DNNs robust to such bit errors in their weights,
allowing DNN inference on “approximate hardware” [7].

Fig. 1 shows the average bit error rates of SRAM arrays
as supply voltage is scaled below Vi, i.e., the measured
lowest voltage at which there are no bit errors. DNNs ro-
bust to a bit error rate (blue, left y-axis) of, e.g., p = 1%
allow to reduce SRAM energy by roughly 30%. To im-
prove DNN robustness to bit errors, we first consider the
impact of fixed-point quantization on robustness. While
prior work [11, 10, 15] studies robustness fo quantization,
we find that the choice of quantization scheme has tremen-
dous impact on robustness, even though accuracy is not
affected. We identify a particularly robust quantization
scheme (RQUANT in Fig. 4, red). Additionally, we propose
aggressive weight clipping during training as regularization
to improve robustness (CLIPPING in Fig. 4, blue). This is in
contrast to, e.g., [ 19, 15] ignoring weight outliers to reduce
quantization range, with sole focus of improving accuracy.

Common error correcting codes (ECCs such as

SECDED), cannot correct multiple bit errors per word (con-
taining multiple DNN weights). However, for p = 1%,
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Figure 2: Left: Exemplary SRAM Bit Error Patterns. Measured bit errors from on-chip SRAM, showing bit flip proba-

bility for a segment of 64 x 128 bits:

indicates a bit flip probability of one, violet indicates zero probability. We show

measurements corresponding to two supply voltages. Right (top): Fixed Pattern Bit Error Training. RErr for training
on a fixed bit error pattern (PATTBET, in combination with RQUANT and CLIPPING) and evaluation on the same pattern
and completely random patterns. PATTBET fails to generalize to lower bit error rates (in red), i.e., subsets of bit errors

trained on, as well as random bit errors (i.e., other chips). [

] includes further comparison of PATTBET and RANDBET.

Right (bottom): Generalization to Profiled Bit Errors. RErr for RANDBET on the profiled bit errors shown on the left.
RANDBET generalizes well to the profiled bit errors, even though the pattern was not seen during training.

the probability of two or more bit errors in a 64-bit word is
13.5%. Error detection via redundancy [12] or supply volt-
age boosting [!] allow error-free low-voltage operation at
the cost of additional energy or space. Therefore, [6, 7]
propose co-design approaches of training DNNs on pro-
filed SRAM/DRAM bit errors. These approaches work as
the spatial bit error patterns can be assumed fixed for a
fixed accelerator and voltage. However, the random na-
ture of variation-induced bit errors requires profiling to be
carried out for each voltage, memory array and individ-
ual chip making training DNNs on profiled bit error pat-
terns an expensive process. More importantly, the obtained
DNNs do not generalize across voltages or to unseen bit
error patterns, e.g., from other memory arrays. We pro-
pose random bit error training (RANDBET) which, in
combination with weight clipping and robust quantization,
obtains robustness against completely random bit error pat-
terns (Fig. 4, violet). Thereby, it generalizes across chips
and voltages, without profiling, hardware-specific mapping
or other circuit-level mitigation strategies.

This paper is a short version of our MLSys’20 work [14].
While it is intended to be self-contained, we refer to [ 14] for
further discussion and results.

2. Low-Voltage Random Bit Errors

We assume the quantized DNN weights to be stored (lin-
early) on multiple memory banks, e.g., SRAM or DRAM.
Following [3, 6, 1], the probability of memory bit cell fail-
ures increases exponentially as operating voltage is scaled
below Viin, i.e., the minimal voltage required for reliable
operation, cf. Fig. 1. This is done intentionally to reduce
energy consumption, e.g., [1, 6, 7], or adversarially by an
attacker, e.g., [17]. Process variation during fabrication
causes a variation in the vulnerability of individual bit cells.
For a specific memory array, bit cell failures are typically

approximately random and independent of each other [3].
Nevertheless, there is generally an “inherited” distribution
of bit cell failures across voltages: as described in [2], if
a bit error occurred at a given voltage, it is likely to occur
at lower voltages, cf. Fig. 2 (left). However, across differ-
ent SRAM arrays or different chips, the patterns or spatial
distribution of bit errors is usually different and can be as-
sumed random [1]. We use the following bit error model:

Random Bit Error Model: The probability of a bit er-
ror is p (in %) for all weight values and bits. For a fixed
memory array, bit errors are persistent across supply volt-
ages, i.e., bit errors at probability p'<p also occur at prob-
ability p. A bit error flips the currently stored bit. We denote
random bit error injection by BErry,

This error model captures the nature of low-voltage in-
duced bit errors, from both SRAM and DRAM [1, 6, 7].
However, our approach in Sec. 3 is model-agnostic: the er-
ror model can be refined if extensive memory characteri-
zation results are available for individual chips. However,
estimating these specifics requires testing infrastructure and
introduces the risk of overfitting. Furthermore, the robust-
ness obtained using our uniform error model generalizes to
profiled bit errors from real chips, cf. Fig. 2 (right).

3. Robustness Against Random Bit Errors

We address robustness against random bit errors in three
steps: First, we analyze the impact of fixed-point quanti-
zation schemes on bit error robustness. This has been ne-
glected both in prior work on low-voltage DNN accelerators
[6, 7] and in work on quantization robustness [ 1, 10, 15].
This yields our robust quantization. On top, we propose
aggressive weight clipping as regularization during train-
ing, enforcing a mor euniformly distributed, i.e., redundant,
weight distribution. We argue that the redundancy is a result
of limiting weight range while encouraging large logits by
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Figure 3: Left: Effect of Weight Clipping. Weight clipping constraints the weights (right), thereby implicitly limiting the
possible range for logits (left, blue). However, even for wy.x = 0.1 the DNN is able to produce high confidences (middle,
blue), suggesting that more weights are used to obtain these logits. As result, the impact of random bit errors, p = 1%, on
the logits/confidences (red) is reduced. Right: Random Bit Error Training (RANDBET). Average RErr of RANDBET
evaluated at bit error rates p = 0.5% and p = 1.5% using m = 8 or 4 bits. For low p, weight clipping provides sufficient
robustness. For larger p, RANDBET increases robustness significantly.

minimizing the cross-entropy loss. Finally, in addition to
robust quantization and weight clipping, we perform ran-
dom bit error training (RANDBET): in contrast to the
fixed bit error patterns in [0, 7], we train on completely ran-
dom bit errors and, generalize across chips and voltages.

3.1. Robust Fixed-Point Quantization

We consider quantization-aware training using a simple
fixed-point quantization scheme commonly used in DNN
accelerators [1]: However, we focus on the impact of quan-
tization schemes on robustness against random bit errors,
mostly neglected so far [11, 10, 15]. Let f(z;w) be a
DNN taking an example z € [0,1], e.g., an image, and
weights w € RW as input. Quantization determines how
weights are represented in memory, e.g., on SRAM. In
a fixed-point quantization scheme, m bits allow to repre-
sent 2™ distinct values. A weight w; € [—Gmax, Gmax] 1S
represented by a signed m-bit integer v; = Q(w;) corre-
sponding to the underlying bits. Here, [—¢max, gmax) is the
symmetric quantization range and signed integers use two’s
complement representation. Then, @ : [—¢max, Gmax] —
{—2m=1t —1,...,2m71 — 1} is defined as

w;

Qws) = LAJ , Q7N (vi) = Ay, A= qufnﬁ (1)

This quantization is symmetric around zero and zero
is represented exactly. Note that we consider quantizing
weights only. In global quantization, gy.x is chosen to ac-
commodate all weights, i.e., gmax = max; |w;|. However,
it has become standard to apply quantization per-layer al-
lowing to adapt gmax to each layer. Per-layer, symmetric
quantization is our default, referred to as NORMAL.

To further reduce quantization error, we also consider ar-
bitrary quantization ranges [¢min, gmax] (@llowing gmin > 0):
We Map [¢min, Gmax) 10 [—1, 1] and quantize [—1, 1] as above.
The resulting per-layer asymmetric quantization has the
finest granularity (i.e., lowest A), however, is not the most
robust. Therefore, we further replace the floor operation
|wi/A] with proper rounding [wi/a]. Similarly, for asym-
metric quantization, we use quantization into unsigned in-

tegers, i.e., @ : [gmin, gmax] — {0,...,2™ — 1}, instead.
DNNs are able to “learn around” these implementation de-
tails (i.e., the crude floor operation or asymmetric quantiza-
tion into signed integers) when optimizing accuracy. How-
ever, regarding bit erro robustness, these details make a dif-
ference, see [ 14] for a detailed discussion. This means that
these differences have little to no impact on accuracy, while
having tremendous impact on robustness against bit errors.

3.2. Weight Clipping

Weight clipping refers to constraining the weights to
[—Wmax, Wmax] during training, where wpm,x is a hyper-
parameter. Generally, wp,y is independent of the quantiza-
tion range(s) which always adapt(s) to the weight range(s) at
hand. However, weight clipping limits the maximum pos-
sible quantization range, i.€., ¢max < Wmax. Note that the
relative errors induced by bit errors do not change through
weight clipping. As the DNN'’s decision is usually invariant
to rescaling, reducing the scale of the weights does not im-
pact robustness. In fact, we found the mean relative error of
the weights to increase with clipping, e.g., at wnax = 0.1.
Thus, weight clipping does not “trivially” improve robust-
ness by reducing the scale of weights. Instead, we found
that the interplay of weight clipping and minimizing the the
cross-entropy loss during training is the key. High confi-
dences can only be achieved by large differences in the log-
its. Because the weights are limited to [—wWmax, Wiax ), large
logits can only be achieved using more weights in each layer
to produce larger outputs. As a result, weight clipping leads
to more weights being utilized, i.e., more redundancy in the
weights, making them less susceptible to (bit) errors, as il-
lustrated in Fig. 3 (left). Also, weight clipping is easy to
implement, adds negligible training cost and does not inter-
fer with other regularizers such as weight decay.

3.3. Random Bit Error Training (RANDBET)

In addition to weight clipping and robust quantization,
we inject random bit errors with probability p during train-
ing to further improve robustness. This results in the fol-
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Figure 4: Robustness to Random Bit Errors. Robust test error (test error after injecting bit errors in the quantized weights,

RErr, |, y-axis) plotted against bit error rate p (x-axis) for our robust fixed-point quantization (RQUANT,

), weight

clipping (CLIPPING, blue) and random bit error training (RANDBET, violet). In each case, we highlight the best model for
each bit error rate. Additionally, we report the overall best model per bit error rate for various bit error rates, e.g., m = 8,4, 3
and 2 on CIFAR10. For 8 bit and low bit error rates, CLIPPING is often sufficient. However, for 4 bit or higher bit error rates,

RANDBET is crucial to keep RErr low.

lowing learning problem:
miny, B[L(f (z;@),y) + L(f(z;w), y)]
st. v =Q(w), ¥ = BErr,(v), w = Q ' (v).
where (x, y) are labeled examples, L is the cross-entropy
loss and v = Q(w) denotes the (element-wise) quantized
weights w which are to be learned. BErr,(v) injects random
bit errors with rate p in v. Note that we consider both the
loss on clean weights and weights with bit errors to avoid
an increase in (clean) test error and stabilizes training. Note
that bit error rate p implies, in expectation, pmW bit er-
rors. We use stochastic gradient descent to optimize Eq. (2),
by performing the gradient computation using the perturbed
weights w = Q~*(9) with & = BErr,(v), while applying
the gradient update on the (floating-point) clean weights w.

2

4. Experiments

We conduct experiments on MNIST and CIFAR [&] and
report (clean) test error Err (lower is better, |), correspond-
ing to clean weights, and robust test error RErr (), i.c.,
the test error after injecting bit errors into the weights.
We report average RErr across 50 samples of random bit er-
rors for a specific rate p. We use SimpleNet [5] on CIFAR10
and Wide ResNet (WRN) [18] on CIFAR100. Normal train-
ing with the standard and our robust quantization are de-
noted NORMAL and RQUANT, respectively. Weight clip-
ping with wp,x is referred to as CLIPPING,,  or together
with RANDBET as RANDBET,,_,, .

Fig. 3 (right) presents RErr on CIFAR10 for m = 8 and
m = 4 bit, showing that our combination of RQUANT,
CLIPPING and RANDBET (trained with p = 1% bit er-
ror rate) improves robustness to random bit errors signifi-
cantly, especially for high bit error rates. For smaller bit er-
ror rates, e.g., p = 0.5%, CLIPPING with wp,x = 0.1 might
be sufficient for robust operation, achieving 6.95%REir,
while RANDBET is necessary at higher bit error rates, e.g.,
p = 1.5%. For lower precision, i.e., m = 4 bits, the benefit
of RANDBET is pronounced even further, reducing RErr
significantly from 15.79% to 9.77% for p = 1.5%. We also

emphasize that RANDBET generalize to lower bit errors
than trained on. This is in contrast to related work [6, 7],
training on fixed bit error patterns (e.g., profiled) as demon-
strated in Fig. 2 (right). RANDBET also generalizes to bit
errors profiled from real chips, see Fig. 2 (right).

Our experiments are summarized in Fig. 4 (right), plot-
ting RErr against bit error rate p for various CLIPPING and
RANDBET models corresponding to different wyax/p (indi-
cated in e gray) in comparison to NORMAL and RQUANT.
RQUANT (red) clearly outperforms NORMAL ( ),
however, RErr increases quickly even for low bit error rates.
CLIPPING (blue) generally reduces RErr, but only the com-
bination with RANDBET (violet) can keep RErr around 6%
for a bit error rate of p ~ 0.5% on CIFAR10. This corre-
sponds to roughly 25% energy savings in Fig. 1 (left). The
best model for each bit error rate p and different precisions
m is shown in black (e.g., solid for m = 8 or dashed for
m = 4). Even for m = 4 bits precision, RANDBET en-
sures low RErr. This enables energy savings from both low-
voltage operation and low precision quantization.

5. Conclusion

Overall, the proposed combination of robust quanti-
zation, weight clipping and random bit error training
(RANDBET) enables robust low-voltage operation without
requiring expensive error correcting codes (ECCs) or other
circuit techniques [ 12, 1]. Furthermore, our analysis applies
both to DRAM, commonly off-chip, and SRAM, usually
used as scratchpads on-chip of DNN accelerators. Com-
pared to co-design approaches [6, 7], we do not require ex-
pert knowledge or expensive profiling infrastructure. More-
over, RANDBET improves over these approaches by gener-
alizing across chips and voltages. We also show that robust
fixed-point quantization only with weight clipping can pro-
vide reasonable robustness. Finally, to further reduce en-
ergy consumption, our approach also enables low-voltage
operation at low precisions, e.g., 4 bits or lower.
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