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Abstract

Adversarial training (AT) has become the de-facto stan-
dard to obtain models robust against adversarial exam-
ples. However, AT exhibits severe robust overfitting: cross-
entropy loss on adversarial examples (robust loss) de-
creases continuously on training examples, while eventu-
ally increasing on test examples. This leads to poor robust
generalization, i.e., low adversarial robustness on new ex-
amples. We study the relationship between robust general-
ization and flatness of the robust loss landscape in weight
space, i.e., whether robust loss changes significantly when
perturbing weights. To this end, we propose a metric to
measure “robust flatness” and find a strong correlation be-
tween good robust generalization and flatness. Through-
out training, flatness reduces during overfitting, i.e., early
stopping effectively finds flatter minima. Similarly, AT vari-
ants such as AT-AWP or TRADES and simple regularization
techniques such as AutoAugment or label noise that improve
robustness also correspond to flatter minima.

1. Introduction

In order to obtain robustness against adversarial exam-
ples [36], adversarial training (AT) [26] augments train-
ing with adversarial examples generated on-the-fly. AT is
known to require more training data [21, 31], generally
leading to generalization problems [ 1]. Robust overfitting
[30] has been identified as the main obstacle: adversarial
robustness on test examples eventually starts to decrease,
while robustness on training examples continues to increase
(cf. Fig. 2). This is typically observed as increasing robust
loss (RLoss) or robust test error (RErr), i.e., (cross-entropy)
loss and test error on adversarial examples. As a result, the
robust generalization gap, i.e., the difference between test
and training robustness, tends to be large. [30], uses early
stopping as a simple strategy to avoid robust overfitting.
Nevertheless, despite recent work [32, 39, 17], it remains
an open and poorly understood problem.

In “clean” generalization (i.e., on natural examples),
overfitting is well-studied and commonly tied to flatness of

Robust Generalization and Flatness e Other
© AT (baseline)
q b © Weight clipping
1.0 Oo& o o @ Label noise
doe ° @ Weight decay
? 3.5 ° o‘oa - ‘oo | @ Self-supervision
3 ° ° O Entropy-SGD
& R ° @ TRADES
z 307 o I I O MART
3 © P % ¢ AT-AWP
725 9 e : <> AutoAugment
54 o
& 9 o . & +Unlabeled
7 204 e ° °l A Carmon et al. [2]
—g 20T 003 © A Engstrom et al. [10]
= oat® @° A Pang et al. [29]
L (5 ° A Wang [37]
A Al A A Wong ct al. [38]
1.0 4 1 —=A A Wuetal [39)
0.00  0.25 100 125 150 175 200 A Zhang et al. [40]
Jase) Flatness in RLoss A Zhang et al. [41]

Figure 1: Robust Generalization and Flatness: Robust
loss (RLoss, lower is more robust, y-axis), i.e., Cross-
entropy loss on PGD adversarial examples [26], against our
flatness measure of RLoss in weight space (lower is “flat-
ter”, x-axis). Popular AT variants improving adversarial
robustness on CIFARI10, e.g., TRADES [40] or AT-AWP
[39], also correspond to flatter minima. Vice-versa, explic-
itly regularizing flatness, e.g., Entropy-SGD [3], also im-
proves robustness. Across all models, there is a clear re-
lationship between good robust generalization and flat-
ness in RLoss. ®,4 Our models, without early stopping.
A RobustBench [5] models with early stopping.

the loss landscape in weight space, both visually [24] and
empirically [28, 20, 19]. In general, the optimal weights on
test examples do not coincide with the minimum found on
training examples. Flatness ensures that the loss does not
increase significantly in a neighborhood around the found
minimum. Therefore, flatness leads to good generalization
because the loss on test examples does not increase sig-
nificantly (i.e., small generalization gap, cf. Fig. 3, right).
[24] showed that visually flatter minima correspond to bet-
ter generalization. [28, 20] formalize this idea by measuring
the change in loss within a local neighborhood. Further-
more, explicitly encouraging flatness during training has
been shown to be successful in practice [42, 4, 25, 3, 18].
Recently, [39] applied the idea of flat minima to AT:
through adversarial weight perturbations, AT is regularized
to find flatter minima of the robust loss landscape. This re-
duces the impact of robust overfitting and improves robust
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Figure 2: Robust Overfitting: Robust loss (RLoss, left)
and robust error (RErr, right) over normalized epochs on
CIFARI10. Left: Training RLoss ( ) reduces con-
tinuously throughout training, while test RLoss (dark blue)
eventually increases again. Robust overfitting is not limited
to incorrectly classified examples (green), but also affects
correctly classified ones ( ). Right: Similar behavior,
but less pronounced, can be observed considering RErr. We
also show RErr obtained through early stopping (red).

generalization, but does not avoid robust overfitting. As re-
sult, early stopping is still necessary. Unfortunately, flatness
is only assessed visually. Similarly, [12] shows that weight
averaging [18] improves robust generalization, indicating
that flatness might be beneficial in general. This raises the
question whether other “tricks” [29, 12], e.g., different ac-
tivation functions [32], label smoothing [35], or approaches
such as AT with self-supervision [!5]/unlabeled examples
[2] are successful because of finding flatter minima.

Contributions: We study whether flatness of the ro-
bust loss (RLoss) in weight space improves robust gen-
eralization. To this end, we propose a scale-invariant [8]
flatness measures for the robust case and show that robust
generalization generally improves alongside flatness and
vice-versa: Fig. | plots RLoss (lower is more robust, y-axis)
against flatness in RLoss (lower is flatter, x-axis), show-
ing a clear relationship. This trend covers a wide range of
AT variants on CIFAR10 [39, 40, 37, 15, 2, 1] and various
regularization schemes, including AutoAugment [7], label
smoothing/noise [35] or weight clipping [33]. Furthermore,
we consider hyper-parameters such as learning rate sched-
ule, weight decay or activation functions [9, 27, 14], and
methods explicitly improving flatness [3, 18].

This paper is a short version of [34]. It is intended to be
self-contained, but we refer to [34] for further discussion.

2. Robust Generalization and Flat Minima

We consider robust generalization and overfitting in the
context of flatness of the robust loss landscape in weight
space, i.e., w.r.t. changes in the weights. While flat min-
ima have consistently been linked to standard generalization
[16, 24, 28, 20], this relationship remains unclear for ad-
versarial robustness. We briefly provide some background
and discuss robust overfitting before introducing our flat-
ness measure based on the change in robust loss along ran-
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Figure 3: Measuring Flatness. Left: Measuring flatness in
a random direction (blue) by computing the difference be-
tween RLoss £ after perturbing weights (i.e., w + v) and
the “reference” RLoss £ given a local neighborhood B (w)
around the found weights w, see Sec. 2.1. In practice, we
average across several random directions. Right: Large
changes in RLoss around the “sharp” minimum causes poor
generalization from training (black) to test examples (red).

loss £ on
training examples

dom weight directions in a local neighborhood.

Notation: Let f be a (deep) neural network taking input
z € [0,1] and weights w € R" and predicting a label
f(z;w). Given a true label y, an adversarial example is a
perturbation & = z + ¢ such that f(Z;w) # y. The pertur-
bation § is enforced to be nearly imperceptible using a L,,
constraint: ||6, < e. To improve robustness, AT injects
adversarial examples during training and minimizes robust
loss (RLoss), i.e., max| 5. <e £(f (2 +0;w),y) with £ be-
ing the cross-entropy loss. The inner maximization is tack-
led using projected gradient descent (PGD) [26]. We focus
on p = oo as this constrains the maximum change per fea-
ture/pixel, e.g., ¢ = 8/255 on CIFARI10. For evaluation, we
consider both RLoss, approximated using PGD, and robust
test error (RErr), computed using AutoAttack [6].

Robust Overfitting: Following [30], Fig. 2 illustrates
the problem of robust overfitting, plotting RLoss (left) and
RErr (right) over epochs, which we normalize by the total
number of epochs for clarity. Shortly after the first learn-
ing rate drop (at epoch 60, i.e., 40% of training), test RLoss
and RErr start to increase significantly, while robustness on
training examples continues to improve. In contrast to [30],
mostly focusing on RErr, Fig. 1 shows that RLoss overfits
more severely. For now, RLoss and RErr do clearly not
move “in parallel” and RLoss, reaching values around 4, is
higher than for a random classifier (which is possible con-
sidering adversarial examples). This is primarily due to
an extremely high RLoss on incorrectly classified test ex-
amples (which are “trivial” adversarial examples). We em-
phasize, however, that robust overfitting also occurs on cor-
rectly classified test examples.

2.1. Flatness Measure

We consider how RLoss changes w.r.t. perturbations in
the weights w. Generally, we expect flatter minima to gen-
eralize better as the loss does not change significantly within
a neighborhood around the found weights. Even if the loss
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Figure 4: Visualizing Flatness: RLoss lanascape across 10

random directions for AT and scaled variants (x2, x0.5).
Training with Adam [22] or MiSH [27] improves adversar-
ial robustness (lower RErr vs. AutoAttack [6]) but do not
result in (visually) flatter minima. In contrast, AT-AWP [39]
or Entropy-SGD [3] improve robustness and flatness.
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Figure 5: Flatness Throughout Training. Test RLoss (y-
axis) plotted against flatness in RLoss (x-axis) during train-
ing, showing a clear correlation. AT with self-supervision
reduces the impact of robust overfitting (RLoss increases
less) and simultaneously favors flatter minima. This behav-
ior is pronounced for AT-AWP, explicitly optimizing flat-
ness, and AT with additional unlabeled examples.

landscape on test examples changes, loss remains small, en-
suring good generalization. The contrary case is illustrated
in Fig. 3 (right). The easiest way to “judge” flatness is visual
inspection, e.g., following [24], where the loss landscape
is visualized along random directions after normalizing the
weights per-filter. The normalization is important to han-
dle difference scales (cf. Fig. 4), i.e., weight distributions,
and allows comparison across models. However, as shown
in Fig. 4, judging flatness visually is difficult: Consider-
ing random weight directions, AT with Adam [22] or small
batch size improves adversarial robustness, but the found
minima look less flat (top). For other approaches, e.g.,
TRADES [40] or AT-AWP [39], results look indeed flat-
ter while also improving robustness (bottom). Furthermore,
not only flatness but also the vertical “height” of the loss
landscape matters and it is impossible to tell “how much”
flatness is necessary.

Average-Case Flatness: Thus, to objectively measure
and compare flatness, we draw inspiration from [28] and
propose an ‘“‘average-case” flatness measures adapted to
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Figure 6: Flatness Across Hyper-Parameters: RLoss (y-
axis) vs. flatness (x-axis) for selected methods and hyper-
parameters (cf. supplementary material). For example, we
consider different strengths of weight decay (rosc) or sizes
& of adversarial weight perturbations for AT-AWP ( ).
For clarity, we plot (dotted) lines representing the trend per
method. Clearly, improved adversarial robustness, i.e., low
RLoss, is related to improved flatness.

the robust loss. Considering random weight perturbations
v € Bg¢(w) within the {-neighborhood of w, flatness is
computed as

E, [||§|r\la}é L(f(x+0;w+v),y)]
- Hgﬁj};eﬁ(f(ﬁr(s; w),y)

averaged over test examples z, y, as illustrated in Fig. 3. We
define B¢ (w) using relative Lo-balls per layer as in [39]:

(1)

Be(w) = {w +v: [vW s < €lJw?|2V layers I}, (2)

Note that the second term in Eq. (1), i.e., the “reference”
robust loss, is important to make the measure independent
of the absolute loss (i.e., corresponding to the vertical shift
in Fig. 3, left). In practice, £ can be as large as 0.5. We refer
to Eq. (1) as flatness in RLoss. By construction, Eq. (2) is
scale-invariant as the weight neighborhood is defined rela-
tive to the Lo norm of the weights.

3. Experiments

We conduct experiments on CIFAR10 [23], where our
AT baseline uses ResNet-18 [13] and is trained using SGD
and a multi-step learning rate schedule. For PGD, we use
7 iterations and ¢ = 8/255 for L., adversarial examples.
PGD-7 is also used for early stopping on the last 500 test
examples. We do not use early stopping by default. For
evaluation on the first 1000 (balanced) test examples, we
run PGD with 20 iterations, 10 random restarts to estimate
RLoss and AutoAttack [6] to estimate RErr. In Eq. (1), we
use 10 random weight perturbations with £ = 0.5. We con-
sider various AT variants, hyper-parameters and optimiza-
tion strategies as summarized in Tab. 1. We also use models
from RobustBench [5], obtained using early stopping.



Model Robustness Flatness | || Early Stop.
(sorted asc. by test RErr) RErr | RErr | RErr |

(split at 70%/30% percentiles) (test) (train) (RLoss) (early stop)
+Unlabeled [2, 1] 489 | 43.2(-5.7) 0.32 48.9 (-0.0)
Cyclic 53.6 | 35.4(-18.2) 0.35 53.6 (-0.0)
AutoAugment [7] 54.0 | 479 (-6.1) 0.49 53.5 (-0.5)
AT-AWP [39] 543 | 43.1(-11.2) 0.35 53.6 (-0.7)
Label noise 56.2 | 30.0 (-26.2) 0.33 55.5 (-0.7)
Weight clipping [33] 56.5 | 39.0 (-17.5) 0.41 56.5 (-0.0)
TRADES [40] 56.7 | 15.8 (-40.9) 0.57 53.4 (-3.3)
Self-supervision [15] 57.1 | 45.0(-12.1) 0.33 56.8 (-0.3)
Weight decay 58.1 | 32.8(-25.3) 0.50 54.8 (-3.3)
Entropy-SGD [3] 58.6 | 46.1(-12.5) 0.28 56.9 (-1.7)
MiSH [27] 59.8 | 5.3(-54.5) 1.56 53.7 (-6.1)
“Late” multi-step 59.8 | 18.4 (-41.4) 0.80 57.8 (-2.0)
SiLU [9] 60.0 | 5.6 (-54.4) 1.71 53.7 (-6.3)
Weight averaging [ 18] 60.0 | 10.0 (-50.0) 1.28 53.0 (-7.0)
Larger e=9/255 60.9 | 11.1(-49.8) 1.33 53.8 (-7.1)
MART [37] 61.0 | 20.8 (-40.2) 0.73 54.7 (-6.3)
GeLU [14] 61.1 | 3.2(-57.9) 1.55 56.7 (-4.4)
Label smoothing [35] 612 | 8.0(-53.2) 0.65 54.0 (-7.2)
AT (baseline) 62.8 | 10.7 (-52.1) 1.21 54.6 (-8.2)

Table 1: Quantitative Results: Test and train RErr (first,
second column, w/ early stopping, fourth column) and flat-
ness in RLoss (third column) for selected methods. RErr
may be slightly higher than reported in the literature due to
our setup, e.g., 7 iterations PGD during training. We split
methods into good, average , and poor robustness us-
ing the 30% and 70% percentiles. Most methods improve
adversarial robustness alongside flatness.

3.1. Robust Generalization and Flatness in RLoss

Recent work [39, 12], and Tab. 1 (fourth column), sug-
gest that robust overfitting can be mitigated using regular-
ization. We hypothesize that this is because strong regular-
ization helps to find flatter minima in the RLoss landscape.

Flatness in RLoss “Explains” Overfitting: Consider-
ing Fig. 5, we find that flatness reduces significantly dur-
ing robust overfitting. Namely, flatness “explains” the in-
creased RLoss caused by overfitting very well. We explic-
itly plot RLoss (y-axis) against flatness in RLoss (x-axis)
across epochs (dark blue to dark red): RLoss and flatness
clearly worsen “alongside” each other during overfitting.
Methods such as AT with self-supervision, AT-AWP or AT
with unlabeled examples avoid both robust overfitting and
sharp minima (right). This relationship generalizes to dif-
ferent hyper-parameter choices of these methods: Fig. 6
plots RLoss (y-axis) vs. flatness (x-axis) across different
hyper-parameters. Again, e.g., for TRADES or ,
hyper-parameters with lower RLoss also correspond to flat-
ter minima. In fact, Fig. 6 indicates that the connection be-
tween robustness and flatness also generalizes across differ-
ent methods (and individual models).

Improved Robustness Through Flatness: Indeed,
across all trained models, we found a strong correlation
between robust generalization and flatness. Here, we
mainly consider RLoss to assess robust generalization as
improvements in RLoss above ~2.3 have, on average, only
small impact on RErr (for 10 classes). Pushing RLoss be-
low 2.3, in contrast, directly translates to better RErr. This
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Figure 7: RLoss and RErr: RErr plotted against RLoss,
showing that improved RLoss does not directly translate
to reduced RErr for large RLoss. Here, reducing RLoss
mainly means reducing the confidence of adversarial exam-
ples, which is necessary to improve adversarial robustness.

is illustrated in Fig. 7 which plots RErr vs. RLoss for all
evaluated models. To avoid this “kink” in the dotted red
lines around RLoss~2.3, Fig. 1 plots RLoss (y-axis) against
average-case flatness in RLoss (x-axis), highlighting se-
lected models. This reveals a clear correlation between ro-
bustness and flatness: More robust methods, e.g., AT with
unlabeled examples or AT-AWP, correspond to flatter min-
ima. Similarly, methods improving flatness, e.g., Entropy-
SGD, weight decay or weight clipping, improve adversar-
ial robustness. Note that Fig. 1 highlights selected mod-
els from literature (colored), e.g., from [5] obtained with
early stopping, while the described relationship is mostly
observed across models without early stopping and with
varying hyper-parameters, cf. Fig. 4. We found that this
also translates to RErr, subject to the described bend at
RLossa22.3. These results are summarized in tabular form
in Tab. 1: Grouping methods by good , average or poor
robustness, we find that methods need some degree of flat-
ness to be successful. Overall, flatness in RLoss has clear
advantages in terms of robust generalization, i.e., low RLoss
on test examples.

4. Conclusion

We studied the relationship between adversarial robust-
ness, also considering robust overfitting [30], and flatness
of the robust loss (RLoss) landscape w.r.t. random perturba-
tions in the weight space. We introduced a scale-invariant
measure of robust flatness and considered popular adversar-
ial training (AT) variants, e.g., TRADES [40], MART [37],
AT-AWP [39] AT with self-supervision [15] or additional
unlabeled examples [2]. Our experiments reveal a clear re-
lationship between adversarial robustness and flatness
in RLoss: more robust methods predominantly find flatter
minima and, vice versa, approaches known to improve flat-
ness help AT improve robustness.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Al-
hussein Fawzi, Robert Stanforth, and Pushmeet Kohli. Are
labels required for improving adversarial robustness? In
NeurIPS, 2019. 2, 4

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C.
Duchi, and Percy Liang. Unlabeled data improves adversar-
ial robustness. In NeurIPS, 2019. 2, 4

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann
LeCun, Carlo Baldassi, Christian Borgs, Jennifer T. Chayes,
Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing
gradient descent into wide valleys. In ICLR, 2017. 1,2, 3, 4
Safa Cicek and Stefano Soatto. Input and weight space
smoothing for semi-supervised learning. In ICCV Work-
shops, 2019. 1

Francesco Croce, Maksym Andriushchenko, Vikash Se-
hwag, Nicolas Flammarion, Mung Chiang, Prateek Mittal,
and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark. arXiv.org, abs/2010.09670, 2020. 1,
3,4

Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In ICML, 2020. 2, 3

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Va-
sudevan, and Quoc V. Le. Autoaugment: Learning augmen-
tation policies from data. arXiv.org, abs/1805.09501, 2018.
2,4

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua
Bengio. Sharp minima can generalize for deep nets. In
ICML,2017. 2

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function approxi-
mation in reinforcement learning. NN, 107, 2018. 2, 4
Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani San-
turkar, and Dimitris Tsipras. Robustness (python library),
2019.

Farzan Farnia, Jesse M. Zhang, and David Tse. Generaliz-
able adversarial training via spectral normalization. In /CLR,
2019. 1

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy A.
Mann, and Pushmeet Kohli. Uncovering the limits of adver-
sarial training against norm-bounded adversarial examples.
arXiv.org, abs/2010.03593, 2020. 2, 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities
and stochastic regularizers with gaussian error linear units.
arXiv.org, abs/1606.08415, 2016. 2, 4

Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and
Dawn Song. Using self-supervised learning can improve
model robustness and uncertainty. In NeurIPS, 2019. 2, 4

S. Hochreiter and J. Schmidhuber. Flat minima. NC, 9, 1997.
2

J. Hwang, Youngwan Lee, Sungchan Oh, and Yu-Seok
Bae. Adversarial training with stochastic weight average.
arXiv.org, abs/2009.10526, 2020. 1

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In
UAIL 2018. 1, 2,4

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip
Krishnan, and Samy Bengio. Fantastic generalization mea-
sures and where to find them. In /CLR, 2020. 1

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima. In /CLR, 2017. 1,2

Marc Khoury and Dylan Hadfield-Menell. On the geometry
of adversarial examples. arXiv.org, abs/1811.00525, 2018. 1
Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In /CLR, 2015. 3

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 3

Hao Li, Zheng Xu, G. Taylor, and T. Goldstein. Visualizing
the loss landscape of neural nets. In NeurIPS, 2018. 1,2, 3
Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin
Jaggi. Don’t use large mini-batches, use local SGD. In ICLR,
2020. 1

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. /CLR, 2018. 1, 2
Diganta Misra. Mish: A self regularized non-monotonic ac-
tivation function. In BMVC, 2020. 2, 3, 4

Behnam Neyshabur, Srinadh Bhojanapalli, David
McAllester, and Nati Srebro. Exploring generalization
in deep learning. In NeurlIPS, 2017. 1,2, 3

Tianyu Pang, Xian Yang, Yinpeng Dong, Hang Su, and
Jun Zhu. Bag of tricks for adversarial training. arXiv.org,
abs/2010.00467, 2020. 2

Leslie Rice, Eric Wong, and J. Zico Kolter. Overfitting in
adversarially robust deep learning. In ICML, 2020. 1, 2, 4
Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal
Talwar, and Aleksander Madry. Adversarially robust gener-
alization requires more data. In NeurIPS, 2018. 1

Vasu Singla, Sahil Singla, David Jacobs, and Soheil Feizi.
Low curvature activations reduce overfitting in adversarial
training. arXiv.org, abs/2102.07861, 2021. 1, 2

David Stutz, Nandhini Chandramoorthy, Matthias Hein, and
Bernt Schiele. Bit error robustness for energy-efficient dnn
accelerators. In MLSys, 2021. 2, 4

David Stutz, Matthias Hein, and Bernt Schiele. Relating ad-
versarially robust generalization to flat minima. arXiv.org,
abs/2104.04448, 2021. 2

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR, 2016. 2,
4

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In /CLR, 2014. 1
Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In ICLR, 2020. 2,
4



(38]

(39]

[40]

[41]

[42]

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is bet-
ter than free: Revisiting adversarial training. arXiv.org,
abs/2001.03994, 2020.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial
weight perturbation helps robust generalization. In NeurIPS,
2020. 1,2,3,4

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing,
Laurent El Ghaoui, and Michael I. Jordan. Theoretically
principled trade-off between robustness and accuracy. In
ICML,2019. 1,2,3,4

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui,
Masashi Sugiyama, and Mohan S. Kankanhalli. Attacks
which do not kill training make adversarial learning stronger.
In ICML, 2020.

Yaowei Zheng, Richong Zhang, and Yongyi Mao. Regu-
larizing neural networks via adversarial model perturbation.
arXiv.org, abs/2010.04925, 2020. 1



