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Abstract

Adversarial attacks pose a genuine threat in practi-
cal machine learning applications. There are existing
methods to detect these attacks, which can only prevent
the systems from making erroneous decisions, but not
helping them in any way. Here we will present a new,
additional and required element to ameliorate adver-
sarial attacks: the recovery of the original class after
a detected attack. Recovering the original class of an
adversarial sample without taking any precautions is
an uncharted concept which we would like to introduce
with our retrieval algorithm based on counter attacks.
As case studies, we demonstrate the validity of our ap-
proach on MNIST, CIFAR10 and ImageNet datasets
where recovery rates were 88%, 53% and 62% accord-
ingly.

1. Introduction

Adversarial attacks which were first introduced in
[23] pose a significant challenge in the practical appli-
cation of deep learning. These methods exploit that
the high dimensional inputs can be perturbed slightly
pushing the samples through the border of the high
dimensional geometrical manifolds of the classifiers [9].

Minor perturbations over the entire image were the
first introduced adversarial attacks which has been
demonstrated by Goodfellow [10]. Many threatening
results have surfaced such as [17] demonstrating a uni-
versal perturbation fooling a classifier on any image
and [1] showing the possibility of fooling a classifier
with a 3D printed object, urging the research com-
munity to find defense mechanisms to ensure the safe
application of neural networks in real-world computer
vision systems.

Most commonly applied defenses against adversarial
attacks belong to one of the three following approaches:
adversarial training [22], modifying the network archi-
tecture [20] or detection approaches [13]. The first

two methods can be considered passive defenses, which
make the network more resilient against attacks and
has to be applied during network training. The third
method, adversarial attack detection, is the most viable
in case of real-world applications, since in this approach
the defense mechanism is separated from the weights
and architectures of the original network, hence the
detector can be changed or updated without retraining
the original classifier.

Detection of adversarial attacks is a great initial step
in real world applications and provides the highest ac-
curacy from the previously mentioned approaches, but
on its own, can not be enough to ensure safety, since de-
tection of attacks will still leave the autonomous system
in complete doubt preventing it from making sound and
reliable decisions. Imagine a self-driving car which de-
tects an object and can correctly identify that it was
malevolently attacked. This information is not enough
to make an action and can leave the agent in complete
doubt regarding its actions. The ultimate safe solu-
tion against adversarial attacks requires an additional
step which is presented in this paper: the retrieval of
the original class of the attacked samples. We will not
only introduce this new problem, but also introduce
a novel algorithm, which retrieves the original class of
attacked images and might serve as a baseline in future
experiments. We will demonstrate the effectiveness of
our algorithm using four different attack mechanisms
on three different datasets MNIST, CIFAR10 and 10
randomly selected classes from ImageNet.

1.1. Adversarial Attack Detection

Defenses against adversarial attacks are required to
prevent security threats in real-world application of
neural networks. Most defenses rely on one of the fol-
lowing three main approaches:

• Modifying the training process e.g adding adver-
sarial samples [19] or perturbing the input before
inference [4] [7] [14].
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• Modifying the network architecture, e.g adding ex-
tra masking layer(s) before the last layer [8] or
changing the loss function by penalizing the de-
gree of variety per class in the output[20].

• Using external models as detectors eg.
SafetyNet[13] and Convolutional Filter Statistics
detector [11].

Although in certain cases adversarial examples can
be hard to detect, this approach is still a viable defense
mechanism, providing the highest accuracy reaching
∼ 85% [11] preventing most security breaches. There
are a lot of other detectors [16] [12] separating the clean
image from the adversarial one by finding some distin-
guishable features and properties e.g. convolution filter
statistics [11] and manifolds [16]. Although detectors
are considered strong defenses against adversarial at-
tacks, an attack can cause a halt in the system hinder-
ing the achievement of any task. In a time sensitive
task e.g self-driving cars, where an on-the-spot deci-
sion has to be drawn, detectors are not sufficient and a
retrieving approach has to be installed recovering the
original class of the input.

2. Class retrieval

Most non-detection defenses are vulnerable to
counter-counter attacks [3] rendering a potential expo-
sure keeping the system without any functioning pro-
tective shield. Detection based defenses on the other
other hand can be continuously updated, but lack the
ability to steer the decision making process obstructing
the installation of any safety measure. Thus, a recov-
ery algorithm has to be employed after the detection of
adversarial attacks providing robustness and resilience.

[21] hypothesized that adversarial attacks exploit
the edge of the decision boundary between classes push-
ing the adversarial sample to the targeted class. Their
idea stemmed from the speculation that training data
will be pushed to the edge of the decision boundary
once they are classified correctly. In [18] and [24], the
authors assume that the reason behind the adversarial
vulnerability of neural networks is the highly positively
curved decision boundary where the curvature is very
intricate near the classes borders. The high dimen-
sionality of neural networks creates convoluted borders
between all the classes making a targeted adversarial
attack highly possible. Taking into account the com-
plexity of the curvature of the decision boundary, we
hypothesise that the distance between the adversarial
sample and the original class’s manifold in the feature
space of the decision boundary is smaller than the dis-
tance between the adversarial sample and any other
classes’ manifolds, hence, all the adversarial samples

and their counter attacks are in the vicinity of the orig-
inal class manifold. We have implemented our idea,
an adversarial retrieving algorithm, on the notion of
our former hypothesis to predict the original class by
counter attacking the adversarial samples.

What we can derive from our hypothesis is that
during the counter attack it would be the easiest to
transform back the attacked image to its original class,
since the attacked sample still contains the required
features in majority, and the manifold of the attacked
class is the closest to the decision boundary of the orig-
inal class. The counter attack can return the attacked
sample to its original class easily since the adversar-
ial sample is on the edge of the original class decision
boundary. Due to the high dimensionality of the deci-
sion boundary curvature, there exist an intricate bor-
der between the manifold of each two randomly selected
classes. To illustrate this hypothesis we made experi-
ments on the MNIST dataset, where 100 randomly se-
lected samples from the same class were attacked (we
considered them an 11th class) and depicted the pro-
jected two-dimensional position of their manifolds us-
ing the UMAP algorithm. An example image can be
seen on Fig. 1 and as it can be seen it confirms our
assumptions that going back to the original class man-
ifold can be easier (done in less iterations) than turning
the sample to any other class. The cross entropy loss
between the counter attack’s output for a targeted class
will be the smallest when targeting the original class.

Figure 1. This figure displays a two dimensional UMAP pro-
jection of the MNIST digits ins the sklearn package with an
additional 100 attacked samples which originally belonged
to class 7 and were transformed to class 3 with the PGD
algorithm. The classes are marked and circled on the figure
’A’ denoting the attacked samples. We generated similar
figures for other classes as well and the results were quali-
tatively the same in all cases.

Our adversarial attack class retrieval algorithm is
presented in algorithm 1 as a pseudo-code. AdvImg
is the adversarial image which has been selected by an
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Algorithm 1: Class retrieval algorithm of ad-
versarial attacks

1 Parameters: NbIter,NbClass,AdvImg,AdvLab
Result: OrigClass

2 Losses = 0, Losses[AdvLab] = ∞
3 for Target : 0 to NbClass do
4 if Target! = AdvLab then
5 ContAdvImg =

Attack(AdvImg,NbIter, Target)
6 Losses[Target] =

loss(ContAdvImg, Target)
7 end

8 end
9 OrigClass = argmin(Losses)

adversarial attack detector. The neural network pre-
diction for the adversarial image is AdvLab which is a
misclassification according to our detector. NbClass is
a fixed parameter representing the number of classes in
our classification problem. We apply a targeted counter
attack using Attack() function where NbIter is the
number of iterations and Target is the targeted label.
The loss function, loss() calculates the cross entropy
loss of the counter adversarial image (ContAdvImg)
having Target as a label. We exterminate the possi-
bility of the adversarial label, AdvLab, being the orig-
inal class by setting its loss to infinity. The original
label, OrigClass, is the class with the minimum loss
excluding the adversarial label where we used argmin
function to return the index of the smallest loss.

To prove the validity of our work, we assumed the
existence of an optimal detector which can identify
all adversarial attacks. We investigated four different
adversarial attacks (projected gradient descent attack
(PGD) [15] , iterative basic method with momentum
[6], Deepfool [19] and patch based attack [2]) 1 which
were briefly explained in the previous section. Deepfool
is not a targeted attack, thus we only used the first two
previously mentioned attacks, PGD attack and itera-
tive basic method with momentum, as a counter adver-
sarial attack. All the investigated adversarial attacks
are white box attacks which relies on the gradients to
calculate the small perturbations fooling the classifier.

3. Experiments

3.1. MNIST

To validate our hypotheses, detailed experiments
have been made over the MNIST and other datasets,
as we will see in the next paragraphs. We investigated

1The first two attacks were adopted from the Advertorch li-
brary [5] while we used the codes of the original papers for the
other two attacks

four different adversarial attacks (PGD attack, itera-
tive basic method with momentum, Deepfool and patch
based attack) to create a matrix with another two
counter attacks (PGD attack, iterative basic method
with momentum). In each case, we attempted to re-
trieve the class of 1000 successfully attacked samples
which means altogether 8000 experiments were made.
Adversarial attack’s maximum distortion were set to
0.8 which is irrelevant for Patch based attacks due
to their unlimited perturbations (only limited by the
range of the intensity values). Number of iterations,
NbIter, is 1000 for the adversarial attacks insuring a
successful attack, but we set it to 3 for the counter ad-
versarial attack illustrating the fast convergence to the
original class. AlexNet architecture was used through-
out our experiments providing a good baseline network
where the average accuracy on clean samples is 96%
(the original 28x28 images were rescaled to 224x224 en-
suring the required input size). Figure 2 demonstrates
the high accuracy of the class retrieval algorithm in-
vestigating the usage of two counter attacks against
the adversarial samples of four different attacks. In
average, 94% of the attacked samples were recovered
correctly predicting their original class averting mis-
classification.

Figure 2. The figure illustrates the success rate of our class
retrieval algorithm on the MNIST dataset, where each cell
represent the accuracy of the retrieval in a specific setup
e.i the algorithm used for the attack can be see in the rows
and the algorithm used for the counter attack can be find
in the columns.

3.2. CIFAR10

We investigated another simple dataset, CIFAR10,
to show the effectiveness of our approach. The same
setup which was described in detail in the previous
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paragraph was used. The only parameters which have
been modified significantly are Adversarial attack’s
maximum distortion and adversarial attacks number
of iterations NbIter, we set the former to 0.3 and the
later to 11. We opted to use these smaller values in
comparison to our setup with MNIST due to the faster
and easier conversion of adversarial samples. Figure 3
shows the success rates using our class retrieval algo-
rithm over CIFAR10 dataset engulfing eight different
setups. We used the AlexNet architecture throughout
our experiments providing a good baseline with 88%
accuracy classifying clean samples. The overall aver-
aged retrieval accuracy is 53%, which demonstrates the
viability of our approach.

Figure 3. The figure illustrates class recovery success rates
on the CIFAR10 dataset, where each cell represents the
accuracy of the retrieval in a specific setup e.i the algorithm
used for the attack and the algorithm used for the counter
attack.

3.3. ImageNet

Our algorithm can be applied in practice with
datasets which contain a limited number of classes N ,
and because of the nature of the algorithm ( N−1 num-
ber of counter attacks have to be made).To investigate
complex and more practical dataset with high resolu-
tion images, we have randomly selected 10 classes from
ImageNet to execute similar experiments as in case of
MNIST and CIFAR10. Altogether 6000 attacks and
retrievals were made and to balance the effect of ran-
dom class selection we selected ten different classes for
each 100 attacks. High resolution images are easier to
attack because of their high dimensionality rendering
a complicated but vulnerable decision boundary cur-
vature which can be compromised by slightly modi-
fying the high number of pixels. Due to this we de-
creased the adversarial attack’s number of iteration to

six. Throughout our investigation, We used the pre-
trained version of Inceptionv3 architecture, from the
torchvision models library. Inception model has one
thousand possible output classes, but our adversarial
and counter attacks were targeting the randomly se-
lected ten classes only. We can see the success rate
on ImageNet in figure 4 where each cell represents the
accuracy of a specific attack and counter attack investi-
gating thousand cases with 10 different random classes
for each hundred trials. 62% is the average accuracy of
recovering six thousand attacked images from ImagNet
using our adversarial retrieval.

Figure 4. The figure depicts the success rate of our adversar-
ial retrieval on ImageNet dataset, where each cell represent
the accuracy of the retrieval in a specific setup investigat-
ing 1000 cases selecting 10 random classes for each hundred
trials.

4. Conclusion

We presented a novel problem, the class retrieval
and recovery of adversarial attacks along with a pro-
posed solution, which can be used as a baseline ap-
proach in further experiments. Our retriever is a self-
evident addition to adversarial attack detectors and
the combination of these two methods can enable the
practical applicability of deep network even in case of
attacks. We investigated four different adversarial at-
tacks (PGD attack , iterative basic method with mo-
mentum, Deepfool and patch based attack) on three
different datasets (MNIST, CIFAR10 and ImageNet).
The results are promising and consistent across all at-
tacks and datasets where the average accuracy is 88%,
53% and 62% respectively. Although the retrieval al-
gorithm was not able to recover the original class in all
cases, but, as a preliminary concept, it clearly shows
that the original class can be retrieved. We hope this
can open the way for further development and fine-
tuning of class retrievals of adversarial attacks which
can increase the robustness of deep neural networks in
real-world applications.
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[24] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfel-
low, D. Boneh, and P. McDaniel. Ensemble adver-
sarial training: Attacks and defenses, 2020. 2

5


