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Abstract

Deep-learning models that perform image classification
tasks are vulnerable to adversarial inputs that lower model
accuracy and recall. Many mitigation techniques sacrifice
original model accuracy to gain robustness against adver-
sarial inputs. Additionally, defense techniques often require
retraining the classification model, a method that is imprac-
tical for models that are already deployed or where the orig-
inal training data is no longer available. With real-world
practicality in mind, we consider a class of anti-adversarial
methods that are optimized for the following constraints:
minimal loss of original model accuracy, no model retrain-
ing, and no access to original model data labels. We intro-
duce and quantify experimental results for optimized model
self-ensembling over transformed inputs that conform to
those constraints. We observe nearly no change to test set
accuracy while mitigating approximately 67% to 70% of ef-
fective adversarial inputs on ResNet50 and EfficientNet-B2
models.

1. Introduction

Deep-learning models that perform image classification
tasks are vulnerable to adversarial inputs that lower model
accuracy and recall[6, 11]. As image classification models
are increasingly applied to high stakes problems, the devel-
opment of effective countermeasures to adversarial inputs
is critical. Successful countermeasures have included use
of randomization [13], additional model training [9, 4, 14],
distilled models [5], gradient obfuscation [I], and novel
transformations to input [16] among other techniques. Typ-
ically, each of these techniques assume a willingness or
ability to mutate the original inference model. In contrast,
we propose a method that preserves the original inference
model weights and architecture.

Current defense strategies often allow for significant loss
of original model accuracy in pursuit of defeating adver-
sarial inputs. Gaining adversarial robustness at the cost of
model accuracy creates a natural trade off between anti-
adversarial strategies. In this work, we prioritize maintain-

ing model accuracy on non-adversarial data and are willing
to tolerate some adversarial loss in pursuit of that goal. We
view this a pragmatic real-world scenario, in which massive
effort may have been used to create an image classification
model, and stakeholders may be rationally unable or unwill-
ing to tolerate loss of model accuracy to mitigate adversarial
inputs.

In this work we develop a defensive wrapper for per-
forming inference using an unaltered classifier model by re-
peatedly applying a random noise function to model input
images and then self-ensembling the results for final classi-
fication. We also demonstrate that individual noise sources
can have strong defensive properties when optimized on
only original label recall, and we show that model retraining
is unnecessary to build an effective countermeasure wrap-
per. We examine a number of noise transforms and sug-
gest an approach of self-ensemble using a soft model vot-
ing that leads to minimal impact on original model accuracy.
Throughout this work, we demonstrate that hyperparameter
optimization can be useful in fine-tuning these methods for
their purpose of defeating adversaries.

1.1. Related Work

Random image transforms have been suggested as an ef-
fective countermeasure to adversarial inputs. In particular,
Barrage of Random Transforms (BaRT)[13] showed that
performing multiple random noising functions on image in-
puts is more powerful than choosing an individual noising
transformation. They identify that applying randomness on
top of randomness creates a stronger defense. They do so
by varying both the type of transform and its parameters.
While this technique is effective, it comes with a large loss
of model accuracy on non-adversarial inputs.

More recently, Qiu et al.[12] suggest another novel noise
technique, but also further defines effective noising as hav-
ing four properties. Paraphrased here they are as follows:
Property #1: Noise outputs do not change model output
values with respect to non-noised model input; Property
#2: Noise outputs measurably change image pixel values
with respect to original input values; Property #3: Noise
outputs are not constant with repeated application, and fi-



nally, Property #4: The noise function is non-differentiable.
Our noise function experiments follow Properties #2 and
#3, however, our proposed use of noise functions does not
align with Property #1, that an individual noise transform
needs to not change model output. We make the distinction
that model inference on non-adversarial inputs needs to be
unchanged, but we illustrate with this experiment that Prop-
erty #1 may still be achieved when individual noise trans-
forms change model output. Additionally, we note that be-
cause of differentiable approximations to non-differentiable
transformations, we understand the desirability of Property
#4 but view it as optional.

2. Method

In our approach we specifically avoid retraining, adjust-
ing weights, or changing model parameters of the original
image classifier. Our method focuses on noising image in-
puts to disrupt the effectiveness of adversarial inputs. There
are three elements to our method: stochastic noise transfor-
mations, model self-ensembling, and hyperparameter opti-
mization on stochastic noise transformations to minimize
the loss of recall due to adversaries against the original
model label.

2.1. Noise Transformations

A stochastic noise transformation is an image transfor-
mation with a random distribution of output. Typically
a transformation has a core deterministic operation that is
paramaterized by other random variable(s) that have either
implicit or explicit distributions. We express ¢(x|H) as
a random transformation of an image z into another im-
age of the same shape given a set of hyper-parameters, H.
If it is necessary to express two random draws from the
same transform, we express it as ¢ (x| H, 0y), t (x| H, 61), etc,
where 0; are random variables from an implied distribution
in the use of any randomization.

One key difference from previous work is that we choose
the hyper-parameters for the random distributions by sys-
tematic optimization toward defending against adversaries.
In previous work, there exist H, but no published method
for choosing the underlying distributions of the noise trans-
formations which we find crucial to the success of the de-
fense.

2.2. Self-Ensembling

Our method relies on performing model inference on
several noised versions of each input image and then en-
sembling the outcomes to make the final inference decision.
The classification model f(z) produces logit outputs given
input z. When using a noised image as input, f(¢(z|H, 0)))
has a distribution induced by the random transformation ¢,
so that for any given input there are multiple random out-
puts of the model.

A model averaging or model voting is performed over K
random draws of ¢(x|H) where H are the hyper-parameters
for the random transformation. Model averaging is defined
as = >, f(t(z|H,0y)).This self-ensemble is K activations
of the same model ensembled into one consensus logit opin-
ion.

In hard voting, the argmax of f(¢(x, H, 0)) is a vote for
a class output. K votes are tabulated over K transforma-
tions f(¢(x, H,0y)) and the ultimate consensus top-1 label
is assigned as the votes. We found reason not to choose this
form of model averaging. The smoothness of the weighted
logits in soft-voting appears to be a desirable feature in this
application, and in hard voting we observed oscillation in
weighted logits depending on if K was even or odd.

2.3. Hyperparameter Optimization

We choose the hyperparameters of our noising functions,
H, by optimizing them to produce images that are classified
the same way by the original model as the non-adversarial
version of the image. That is, we use the recall of the origi-
nal model output on the non-adversarial version of an image
as the objective function to score the value of H as it acts
on an adversarial input.

We create a non-adversarial corpus of data (X,Y’), where
(z,y) € (X,Y) are input image and true label pairs.
We only utilize true Y in testing. In its place for hyper-
optimization, we utilize the top-1 non-adversarial model la-
bel, Y = (argmax f(x) for each 2 € X). We also create an
adversarial corpus (X', Y”) by applying adversarial meth-
ods to the images in X and recording the model outputs on
the adversarial images such that the accuracy of the original
model is zero. That is to say for all (y,y’) € (Y,Y’),y #

/

Y.

The wrapped model is defined as g(z|H) =
argmax - >_, f(t(z|H,0)). The objective function used
to find the optimal H is:

Recall(X, X', Y|H) =
(g ==y), O

LD

(z,2',y)€(X,X",Y)

where N is the number of images in the hyper-optimization
training set. Recall(X, X’,Y|H) is optimized with Tree-
Structured Parzen Estimators implemented in the Python
Hyperopt library [2, 3]. Priors are uniform over allowable
range depending on H

We prefer the recall of the original top-1 label over the
ground truth label accuracy as an objective function because
it does not require knowledge of the original training data
set or even labeled training data. We do use the original
model label for experimental evaluation.



3. Experiments
3.1. Data

Data used in experimentation are 10 classes of Imagenet
[8] selected at random from public validation data sets. This
is further split into 90/10/10 % for training, validation and
testing respectively. True labels for these data are used only
in testing sets and test time measurements. Training is done
without original label.

3.2. Models

We use EfficientNet-B2[15] and Resnet50[7] as our clas-
sification models. EfficientNet was a clear leading new im-
age classification architecture at the time this research be-
gan. Resnet50 has continued success in ensembled models.

3.3. Adversarial Methods

The adversarial methods on Imagenet classifiers are de-
rived from off-the-shelf software in the Python Cleverhans
library[ 1 1]. Each image from train, validation, and test re-
ceives one adversarial perturbation from Fast Gradient Sign
Method (e = 2.0)[6], Projected Gradient Descent (max € =
2.0) [9], Carlini and Wagner L2 attack (confidence=5.0)[1],
and DeepFool [10]. All adversarial images are filtered so
that there is a top-1 evasion of the original label, and un-
successful perturbations are discarded. Thus original model
accuracy on the adversarial data set is 0.0.

3.4. Noise Transformations

We consider four noise transformations most promising
in initial studies. U(a, b) describe uniform random distribu-
tions between real numbers (a,b). The four noising func-
tions are CropZoom, JPEG compression, Gaussian Blur,
and Singular Value Decomposition (SVD). Details on their
implementation can be found in the appendix.

4. Results

The top single ensemble noise function of Table | is an
optimized CropZoom. CropZoom outperforms other sin-
gle noise operations and also outperforms a CropZoom fol-
lowed by JPEG noise source in sequence. On Efficient-
Net, CropZoom with 10 logit-averages has nearly equiva-
lent non-adversarial accuracy as the baseline model. On
ResNet50, CropZoom with 10 logit-averages has better than
baseline non-adversarial accuracy. We speculate this may
be due to the 10-class training and test Imagenet data set
as being easier to classify on average for Resnet50 with a
center crop zoom operation. If so, this would be a type of
bias induced by optimizing an image corpus for a particu-
lar model. For example, Table 2 shows parameters cannot
use as input the lower left quarter of an image. What the
increase in accuracy is suggesting is that there are training

data sets such that the lower left quarter of an image is never
more useful than having an average increase in image reso-
lution input to the Resnet50 model (which requires a 224 by
224 image input resize). This bias effect did not manifest in
EfficientNet, which is possible if EfficientNet handles mul-
tiple resolution object inputs better than Resnet50.

As demonstrated in Figures 1 and 2, the effect of self-
ensemble K with logit averaging is moderate. There is an
initial drop of accuracy for applying a noise source that is
largely recovered by logit averaging of repeat noise appli-
cations. The growth of accuracy with increasing K is con-
sistent across models.

4.1. Discussion

We find that one distinguishing feature of our method is
the preservation of model accuracy on non-adversarial in-
puts. Our most straight-forward two operation comparison
to BaRT [13] is our CropZoom + JPEG sequence. This is
a fair comparison because has a variable number of noise
operations, including these two noise transforms. With our
method, we observe 0.2% drop to in non-adversarial accu-
racy for Resnet50. While BaRT observed an approximately
12% drop for the same metric. We speculate that is due to
retraining the original Resnet50 model. Additionally, we
note that BaRT is randomly selecting from both effective
and ineffective anti-adversarial noises to form an ensemble
of two, and as a result, it has worse performance than if
only the two best noise transforms were selected. While
this method of randomly mixing noise functions provides
a more difficult problem for the adversary, it also mixes
weak and strong noise transforms in terms of objective per-
formance. We chose to employ only the strongest noise
sources furthermore optimized their hyperparameters.

Our proposed wrapper does not have a model retrain, and
avoids the noise sources that create low non-adversarial ac-
curacy when applied in succession. In addition, model av-
eraging handles noise differently than other methods. For
instance, ensembles in BaRT are successive operations on
the same input image, so that as a greater number of noise
operations are applied the noised input image continues to
diverge from the original image. With our wrapper, each
noise operation is re-applied to the original input and then
model output is used to construct a consensus via ensem-
bling. We see a trend of increasing accuracy as we increase
the number of noisers used, rather then a decrease in accu-
racy that occurs when noise is used in sequence on a single
input.

Qiu et. al. [12] improved upon BaRT by asserting the
ideal transform has the property that the model output is
invariant to the noise transform, but otherwise the work
shared similarity with BaRT in the sense that it was one
model output per model input.

There is a basic incompatibility to noise transforms use-



Avg. Accon Avg. Accon Avg. Accon Baseline
Model Transform Adversaries  Adversaries  Non-Adversaries Accuracy
K=1 K=25 K=25

Resnet50 CropZoom 0.655 0.678 0.804 0.785
JPEG 0.501 0.506 0.685 0.785
GaussianBlur 0.413 0.428 0.565 0.785
SVD 0.364 0.364 0.652 0.785
CropZoom + JPEG 0.636 0.667 0.783 0.785
EfficientNet B2  CropZoom 0.679 0.715 0.852 0.858
JPEG 0.636 0.637 0.792 0.858
GaussianBlur 0.542 0.542 0.661 0.858
SVD 0.491 0.494 0.683 0.858
CropZoom + JPEG 0.704 0.737 0.803 0.858

Table 1. Test set accuracy for noising and baseline evaluations. Baseline evaluations are of the original model on test sample sizes of 2295
and 1687 images for Resnet50 and EfficientNet B2, respectively. K=25 refers to using 25 activations of the model on 25 random instances
of the noise input. CropZoom benefits the most from logit averaging. The best over-all performer against the test library of adversarial
images is CropZoom+JPEG, however, the double noise has a non-adversarial model accuracy penalty. Whereas CropZoom alone has

negligible non-adversarial performance losses.

ful for model averaging and noise transforms useful for re-
peated noise stacking with the invariant property. If for a
random transform, it is always the case that f(¢(x)|H; o))
= f(t(x|H;61)), then the expectation of the model averag-
ing is equivalent to a single transform.

Eq[1/K Y [f(ta[H,00))] = f(t(z|H:0)), (2)
k

This outcome is not damaging to our technique, but the
model averaging is not useful because all elements of the
summation are the same and there is no variance in model
output to average over.

One trade-off of utilizing self-ensembling is the higher
computational cost at inference time. While each image re-
quires K times the compute cost while performing infer-
ence, the model is weights are fixed which avoids the com-
putational cost of retraining the full model. In situations
where model retraining would be more costly or infeasible
due to other constraints (such as unavailability of data) our
method offers an alternative at the cost of greater inference
computation.

5. Conclusion

We find that the use of random transforms is useful in
real-world scenarios where it is preferable to modify the in-
puts rather than modifying the model. However, we do note
that this comes at the cost of increasing the number of in-
ference decisions that a model needs to make at run time
which could be impractical in certain scenarios. We also
note that there are two emergent themes in the use of noise
for anti-adversarial inputs. The first is repeated noise re-
applied to the same image. This countermeasure achieves
its anti-adversarial property by stacking more noise than the

adversarial technique is prepared to handle. The cost of us-
ing methods that stack noise is a steadily degraded original
model accuracy. Our alternative technique is to model av-
erage repeated noise applications. With our technique, the
original model accuracy is not steadily degraded as more
noise is added to the image. We argue that there are reasons
to prefer each strategy depending on goals and available re-
sources.
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Figure 1. Effect of self-ensemble count on Resnet50 test set ac-
curacy in non-adversarial and adversarial inputs. Logit averaging
increases accuracy 2 to 3% depending on context.
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Appendix

A. Noising Functions

CropZoom In crop zoom an image is subset to pixels in a
rectangle defined by (rg,co) x (r1,c1). The interior sec-
tion of the image defined by this rectangle is resized to
model input dimensions, which has the effect of cropping
then zooming. A crop zoom transformation is parameter-
ized as t(x;7g, co, 71, ¢1), and in general we express these
parameters on [0,1] as a portion of the image size.

The corners of the crop zoom are allowed to dis-
tribute randomly over a range determined by a hyper-
parameterization. This distribution is described as a ran-
dom initial point to a random offset from that initial point.
o ~ U(lo, ll), d, ~ U(Uo, ul), and r = rg + d,, so that
rq is the random initial row, and d,. is the random row off-
set to the other corner. ¢y ~ U(lp,l1), de ~ U(ug,u),
and ¢ = c¢g + d., describes a similar distribution on
columns. [y, Iy, ug,and u; are hyper-parameters selected to
optimize a scoring function based on model results. Thus,
t(x; 1o, 11, up, up) is a fully defined distribution conditioned
on 4 uniform random variables, U, that describes a random-
ized crop zoom on an image.

JPEG In the JPEG noise an image is encoded in JPEG
with a compression value v. To create random distribu-
tion for model averaging, v ~ U(vg, v1), where vy and vq



are hyper-parameters. ¢(x;vg,v1) describes a randomized
JPEG image.

Gaussian Blur A Gaussian kernel radial basis function
smooths input image x. With probability p, an image is
either blurred as single channel parameterization, or red,
green, and blue are parameterized independently. In either
case, the channel is blurred with a radial basis function with
standard deviation s, where s ~ U(so, s1), where s¢ and
s1 are hyper-parameters. ¢(x; p, o, s1) describes a random-
ized blurred image. This transform follows the one intro-
duced by Barrage of Random Transforms (BART).

Singular Value Decomposition (SVD) Motivated by re-
cent use of SVD for anti-adversarial inputs [17], we ex-
amined a noised SVD transform. Similar to Gaussian blur
an SVD transform on an image reduces image color com-
plexity. Input z is decomposed by color channel into ma-
trix values R, G, B (red, green, blue) of shape equal to
pixels in the original image. Matrix decompositions of
R = URZRS£7G = nggsg7B = UBEBS£~ Yisa
diagonal matrix with singular values on the diagonal. The
first N largest singular values select the first columns and
rows of U, ¥,S to create compressed channel approxima-
tions R* = UpXhSE, G = UL Se, B = UpSsSiL,
where * indicates reduces dimension.

To add a stochastic element to this decomposition, the
>* (singular value loading) is given an additive and mul-
tiplicative white noise. Each color component is randomly
modified as X7, = ;;3;; + i, where a;; ~ Normal(0, a X
s/K) and B;; ~ Normal(1,0.025 x b), where s is the stan-
dard deviation of all singular values and K is the number
of singular values in . The additive component on singu-
lar values is kept small near 0, and the multiplicative com-
ponent is mostly determined in optimization. In addition
the loading vectors are given a small additive noise, U;; =
U+cij and Sf; = S};+d;; where ¢;; ~ Normal(0, 0.001)
and d;; ~ Normal(0,0.001). There are a number of gener-
ative model decisions for these noise that could be altered
in future work, but this transform can be understood as sim-
plifying the image with N component vectors followed by
noising the simplification.

In this parameterization, number of components, N,
and scaling values a and b are hyper-parameterized for
t(x; N, a,b).

Transform Resnet50 Parameters Efficientnet B2 Paramet
r0,¢o ~ U(0.061,0.166) | ro,co ~ U(0.128,0.29¢
CropZoom r1,c1 ~ U(0.645,0.747) | r1,c1 ~ U(0.738, 0.96¢
JPEG Compression | v ~ U(26,43) v~ U(29,34)
p = 0.644 p = 0.644

Gaussian Blur

s ~ U(1.179, 2.460)

s~ U(1.258,1.675)

SVD

N=40
a=1.484
b =2.565

N =40
a=0.924
b=13.436

Table 2. Optimal parameters of t(x,H) for individual noise trans-
forms. Optimization is on original model top-1 label recall with
optimized parameterizations. U (a, b) is a uniform distribution be-

tween (a, ).



