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Abstract

As CNNs become more prevalent, it is important
to increase their robustness before placing them in
mission-critical applications. Recent work has exposed
strong vulnerabilities in them. And while numerous at-
tacks have been developed in white and black-box set-
tings, they rely on the fact that the size of the image is
known. In this work, we examine the effect of resizing
methods and size ranges on adversarial example effi-
cacy. Then, we present a novel way to resize adversar-
ial noise which can target models that accept images of
a different size. Finally, we present a multi-scale attack
which can create one adversarial image that transfers
to multiple different sizes at once. Our methods are ag-
nostic to the attack used and the way resizing is done.
We show that our methods work on image downscaling
methods commonly used in deep learning libraries using
a subset of ImageNet, called CINIC-10.

1. Introduction

Reliance on CNNs is increasing at an exponential
rate. Their use has spread from image classification
contests [18] to self-driving cars [3, 17], face recogni-
tion [13, 21], and x-ray analysis [15]. Despite their in-
creased use in mission-critical roles, it is trivial to fool
them with adversarial examples—images with added
noise meant to cause misclassification [9, 12, 20].

In typical research settings, it is often assumed that
there is minimal preprocessing applied to images be-
fore inference. Partly because datasets, like CIFAR-
10 and ImageNet, can be downloaded in a standard
size and file format. However, in real world settings,
images come in all shapes, sizes, and formats, requir-
ing advanced preprocessing. And while some attacks
have attempted to persist adversariality through JPEG
compression [19] or used resizing to transfer them be-
tween black-box models of the same input size [25],
none have tackled transferring them between models
that accept different input sizes to our knowledge.

In this paper we show how extreme resizing of an
image effects adversariality and we propose a novel
method for creating adversarial examples that can
transfer through resizing transformations (See Fig. 1).
Our method is able to create examples which can fool
a classifier of any size regardless of the original image
size, while keeping the original resolution.

Our paper is organized as such: First, we present
an overview of attacks and defenses proposed in recent
years, with a focus on ones that rely on image resiz-
ing. Second, we present our methods for creating ad-
versarial attacks which can transfer through resizing.
Third, we present the effect of different image resizing
methods on adversariality and show that adversarial
examples break during resizing. Finally, we evaluate
the effectiveness of our method when used to extend
existing attacks through resizing.

Figure 1: Traditional attacks are unable to transfer
through a wide range of image resizing. When classi-
fying images created using a traditional attack (green
arrows), they are unable to trick classifiers that ac-
cept a different size than the original image. With our
single-scale adversarial attack (orange arrows), we can
create adversarial examples that transfer across sizes
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2. Previous Work

2.1. Adversarial Examples

Adversarial examples are images that have a small
added perturbation that causes them to be incorrectly
classified by machine learning classifiers, while still be-
ing recognizable to humans. They were first discovered
by Szegedy et al . [20], who implemented the first at-
tack using L-BGFS optimization. Goodfellow et al . [9]
expanded upon adversarial examples by introducing
the Fast Gradient Sign Method (FGSM), a one-step
method for creating them. Madry et al . [16] intro-
duced Projected Gradient Descent (PGD), a stronger,
iterative version of FGSM that bounds the perturba-
tion in an `p ball around the original image. Out of all
white-box attacks formulated in recent years, Carlini
and Wagner’s [5] attack is arguably the strongest. It
has been shown to break many defenses that were pre-
viously successful in the past [1, 6, 4]. Although our
method is agnostic to the type of attack used, in this
work we use FGSM and PGD to generate adversarial
examples. They are strong white box attacks that are
still fast enough to test on a large dataset.

2.2. Downscaling Attacks

As our work is focused on the effects of resizing ad-
versarial attacks, we mention three additional papers.
Xiao [23] brought to light security flaws in many deep
learning pipelines and showed that a nearest neighbor
filter can easily be beaten. We extend gradient-based
attacks so they can target classifiers of any size and
keep adversariality through any resizing filter.

Athalye et al . [2] use Expectation over Transforma-
tion to create adversarial images robust to a presumed
transformation distribution. While they consider scale,
they limit it to 0.9-1.4× the original size. Xie et al . [25]
used the resizing and padding methods described in [24]
during each step of Iterative FGSM (I-FGSM) to cre-
ate adversarial examples that transfer better in white
and black-box settings. Although their work creates
attacks that transfer across sizes, they also only vary
the scale of the image slightly (up to 1.1×).

3. Our Method

3.1. Single-Scale Attack

Our single-scale attack allows an image of a certain
size (s) to be able to attack a model which accepts
images of a different size (t). We first resize the clean
image X to match the classifier’s input size t.

Xt = resize(X, t) (1)

where the subscript refers to the current size of the
image. We then use Xt as the starting point for a
PGD attack on the target classifier.

Xtadv
= ATK(Xt, ε) (2)

where ATK is the attack algorithm (for example,
PGD) used, and ε is the strength of the attack.

We upscale the previously downscaled clean and ad-
versarial version of our image back up to the original
size s.

Xt
sadv

= resize(Xtadv
, s) (3)

Xt
s = resize(Xt, s) (4)

Although Xt
s is the same size as X, they are different

because Xt
s went through resizing twice and the su-

perscript refers to the size of the image before being
resized. We do this because taking the difference be-
tween them gives us a close approximation of what the
adversarial noise would be if it could be perfectly up-
scaled back to the original size. We take the upscaled
adversarial noise and add it to a clean copy of the image
we started with, leaving us with an adversarial version
of the original image, denoted Xadv.

Xadv = X + (Xt
sadv
−Xt

s) (5)

When the high resolution adversarial example (Xadv)
is sent to the target classifier, it will be resized to the
target size t. Even though it has gone through resizing,
this image will be able to “fool” the classifier as its
noise targets that specific size while still looking like
the original image X.

3.2. Our Multi-Scale Attack

We adapt our method to attack multiple sized clas-
sifiers at once for when the target classifier’s input size
is unknown or if there is an ensemble of classifiers that
each accepting different sizes. Instead of attacking a
single classifier, we assemble a set of classifiers keyed
on different sizes and perform our single-scale attack
on each individual classifier. This relies on the fact
that although adversarial perturbations do not trans-
fer through a wide range of scales, they transfer well
over small scale changes. By selecting a representative
set of classifiers to attack, we can create true “multi-
scale” attacks.

This equates to changing Eq. 5 to

Xadv = X +
∑
t∈T

(Xt
sadv
−Xt

s) (6)

where T is the set of representative sizes we use to
generate the attack on. In order to ensure that the
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resulting noise is not too large we change Eq. 2 to

Xtadv
= ATK(Xt,

ε

η
) (7)

where η is a suppressing factor on the noise. This de-
faults to our single-scale attack when T contains only
one size and η = 1, while allowing flexibility in attack-
ing multiple sizes at once. We introduce η because if
we use the original ε when attacking multiple sizes at
once, the resulting `∞ distance can be large. We find
that setting η = |T | provides a good balance between
image quality and adversarial success using our multi-
scale attack.

3.3. Model Architecture and Parameters

We use ResNet-20 [10] for our models, only changing
the input size. Before training we use bilinear filter-
ing to resize images, normalize them, and subtract the
training mean. We also use data augmentation meth-
ods such as flipping, shifting, and rotation. We train
each model for 200 epochs, with a learning rate of 0.1
that is reduced by a factor of 10 at 80, 120, and 160
epochs. We use a mini-batch of 32. Each model took
less than a day to train on a single V100 GPU. Our
attacks use `∞ distance to limit perturbations.

4. Experiments and Results

4.1. CINIC-10

In recent literature, MNIST [14], CIFAR-10 [11],
Tiny ImageNet [22], and ImageNet [8] are four com-
mon datasets used to attack CNNs. For our purposes,
MNIST, CIFAR-10, and Tiny ImageNet’s images are
too small to get meaningful results after further down-
scaling. And while ImageNet contains images that
meet our downscaling requirements, using it to train
models at multiple image sizes and with different resiz-
ing filters is computationally expensive. Instead we use
a subset of ImageNet called CINIC-10 [7]. It is a mix
between ImageNet and CIFAR-10 that collates many
of ImageNet’s synsets into CIFAR-10’s classes. It in-
cludes 80k training images and 40k validation images.

4.2. Resizing Kills Adversariality

Although adversarial images are transferable be-
tween different models as long as they accept images of
roughly the same size [9, 20], we wanted to test if this
holds true when two model classify images of varying
sizes. We conducted experiments with multiple resizing
filters and sizes. In Fig. 3 we include a portion of these
results that shows they do not transfer well through
bilinear filter resizing and that the further away in size
the target model is from the one used to generate the

Figure 2: 256×256 classifier accuracy on 10,000 clean
and adversarial images created using an adapted DI2-
FGSM with a transformation probability of 100%

Figure 3: Accuracy on adversarial examples that target
each sized classifier using our single-scale attack using
FGSM (ε = 0.1) and PGD (ε = 0.3) versus examples
created on a 256×256 classifier and downscaled

adversarial examples, the less effective they are. This
can be seen in the curves representing the different ε
values. As the attack was created on a 256×256 clas-
sifier, the accuracy on small images is almost equal to
the clean accuracy. We obtain similar results for other
resizing methods that we show in Appendix B, with
one exception being the nearest neighbor filter which
is vulnerable in other ways [23].

4.3. Baseline Comparison

Although there is no previous work that directly
attacks models with differently sized images, we be-
lieve DI2-FGSM [25] is the closest to our own. To
fairly compare our attacks, we adapt it to our wide
range of sizes. At every step of I-FGSM, they per-
form random resizing with a probability p, over a
small range of sizes, [299, 330). We perform the
same algorithm, picking one of our seven sizes ran-
domly ([32, 48, 64, 96, 128, 192, 256]) and then padding
all sides before taking an I-FGSM step. In Fig. 2, we
show that when using the attack settings suggested
by [25], the adapted DI2-FGSM does not perform bet-
ter than simple downscaling (Fig. 3).
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4.4. Single-Scale Attack

We use all 40k 2562 validation images from CINIC-
10 to create examples using our single scale at-
tack whose target is one of the following sizes:
[32, 48, 64, 96, 128, 192, 256]. This gives us 280k 2562

single-scale adversarial images that we resize and send
to the same classifier used to create them to see if their
adversariality transferred through resizing. And we fo-
cus on downscaling because accuracy on clean images
decreases when upscaled, shown in Appendix A.

In Fig. 3, we present the classifiers’ accuracies when
using FGSM and PGD. The results clearly show that
examples generated using our attack mostly keep their
adversariality after being downscaled while the original
attacks do not. Although our method performs better
than both attacks, it is clear that at higher ε values,
FGSM attacks transfer between sizes better than PGD.
However, the resulting FGSM images are often of very
poor quality compared to ours.

Fig. 4 shows that although these attacks are able
to fool classifiers that accept images of the same size
as the one the attack was created on (the diagonals),
they are not able to consistently fool classifiers that
were trained on any other size (the off diagonals).

Figure 4: Accuracy on clean and adversarial images
created using our single-scale attack (εFGSM = 0.1,
εPGD = 0.3). The bottom half of each square is FGSM
accuracy and the top is the PGD accuracy. Rows rep-
resent the size of the classifier the images were created
on. Columns represent the size of the classifier the
images were tested on. As the color gets darker, the
better our attack worked at tricking the classifier

Figure 5: Accuracy on clean and adversarial images
created with our single and multi-scale attack using
FGSM and PGD. While the single-scale attacks are
different for each size, our multi-scale attack is a single
image able to attack all seven classifiers individually

4.5. Multi-Scale Attack

We created a representative set of classifiers where
each model accepts images of a different size (e.g. one
of [32, 48, 64, 96, 128, 192, 256]). Using our multi-scale
attack, we generated 40k examples that we send to
each classifier in the set, with FGSM and PGD results
in Fig. 5. As opposed to the single-scale attack, each of
these can attack all seven classifiers at once. This fig-
ure shows two things. The first is that our multi-scale
attack, is able to sufficiently attack each classifier of a
different size simultaneously, bringing all of their indi-
vidual accuracies at or below 18% in the case of FGSM
and 11% using PGD. The second is that each classifier’s
accuracy on the multi-scale images is not much higher
than it is on the single-scale ones—indicating that we
are able to keep each classifier’s specific perturbations,
even when adding all of their individual one’s.

5. Discussion and Conclusion

In this paper we have shown a way to transfer ad-
versarial attacks through resizing methods. While tra-
ditional FGSM and PGD attacks are unable to transfer
well across sizes, our attacks can create adversarial im-
ages that transfer to a specific size or range of sizes.

There are many directions in which we can extend
this work in the future. For example, looking for a bet-
ter way to automatically determine the size or range of
sizes to attack. In addition, we plan on examining how
well our attacks transfer to sizes outside of the seven
sizes we used, how other types of defenses effect our
results, and how we can adapt our method to persist
in these cases.
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Figure 6: Accuracy of each classifier tested on clean
images that were resized. Rows represent the size of
the original images we started with while columns rep-
resent the size we resized the images to and the size
of the classifier used. Sizes along and to the left of
the diagonal (downscaled) mostly keep their accuracy
after resizing, while sizes to the right of the diagonal
(upscaled) start to lose accuracy immediately.

A. Clean Image Resizing

To help illustrate why we focus on downscaling im-
ages instead of upscaling them, we show the accuracy of
upscaled images in Fig. 6. When you take small images
and upscale them, you lose the quality and definition of
them the further you go. And since classifiers are often
trained on images that were downscaled or not resized
at all, they start to become more inaccurate. For ex-
ample, if we take our 32×32 images and scale them
up to 256×256, we are only able to correctly classify
22.03%.

B. Resizing Kills Adversariality

We show in Fig. 7, all filters (except for nearest
neighbor) achieve similar accuracies on clean and at-
tacked images, regardless of ε or size. Most examples
fool the network they were created on, regardless of the
ε used. As the resized images get further in size from
the original, they tend to stop working (e.g . 256×256
adversarial images work better on the 128×128 classi-
fier than they do on the 64×64 one). It is clear that
when the scale change is extreme, the accuracy for the
clean images and adversarial ones is comparable.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Classifier accuracy on clean and adversarial 2562 images that have been downscaled using six image
resizing methods. All adversarial images were created using PGD with varying ε values (as seen in each plot’s
legend) and tested on classifiers that were trained on clean 2562 images resized using the filter in each plot’s title.
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