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ABSTRACT

With the advance of deep learning (DL) on sensitive classification tasks, recent
works propose privacy-preserving DL evaluation methods to protect the client data
privacy. However, DL models are also valuable as it is costly to collect training
data. Fully homomorphic encryption (FHE) offers a promising security solution
to preserve the privacy of both parties. Previous work finds that binarized neural
networks (BNNs) are suitable for FHE which evaluates a function represented
in logic gates. Yet, the computation costs of previous BNNs under FHE are
very large. In this work, we first design evaluation circuits to enable any BNN
inference under FHE. By leveraging a new BNN cost metric for FHE, called
gate ops, we identify that the computation bottleneck of BNNs under FHE is the
adder tree. Thus, we propose GateNet to reduce adder tree depth using group
convolution which was originally designed to reduce multiplication. Also, as
the non-linear functions are not the computation bottleneck, we apply a more
advanced non-linear function to preserve task accuracy. Results show that GateNet
can achieve 13.0×/28.5×/66.4× speedup over the state-of-the-art BNNs under
FHE on MNIST/CIFAR-10/ImageNet datasets while keeping a high task accuracy
(-0.9%/-1.2%/-4.1%). GateNet is the first work that guarantees the privacy of both
model and client data on large dataset beyond MNIST.

1 INTRODUCTION
Deep Neural Networks (DNNs) have been widely used in many fields of applications such as image
classification (He et al., 2016; Xie et al., 2019) and objective detection (Redmon et al., 2016). Many
application domains (e.g., medical (Blecker et al., 2018), fraud detection (Ghosh & Reilly, 1994)
require privacy and confidentiality in both the model vendors and clients data.

Among all possible methods for privacy-preserving DNN evaluation, such as Garble Circuit (GC) (Ri-
azi et al., 2019) and differential privacy (DP) (Chase et al., 2017), Fully Homomorphic Encryption
(FHE) is an ideal solution. Given encryptions E(x) and E(y), FHE allows the computation of function
f and yields E( f (x,y)) without intermediate decryption of the ciphertext.

Many works have been proposed to accelerate the evaluation of DNN models on FHE data. The first
mainstreams of work use a leveled SomeWhat HE (SWHE). These works are implemented using
HElib (Halevi & Shoup, 2014) which allows very efficient ciphertext multiplications and additions.
However, in FHE, noise accumulated during computation. To evaluate unbounded computation
depth on the encrypted values, SWHE must apply bootstrapping to remove the noise in the result
and this operation is extremely slow using HElib. To prevent noise accumulation, SWHE methods
do not guarantee the privacy of model parameters, i.e., they compute the result from plaintext
(model) and ciphertext (client data), which yields less noise to accommodate more computation steps.
Another critical issue of SWHE is the non-linear functions1. Previous works (Chou et al., 2018;
Gilad-Bachrach et al., 2016) use low-degree polynomials to approximate the non-linear functions
which incurs large task accuracy loss. Other work (Juvekar et al., 2018) switches to other encryption
protocols (e.g., Garble circuit) to do non-linear function which incurs many engineering difficulties.

1HELib Halevi & Shoup (2014) for SWHE is built on BGV protocol which only allows polynomial operations
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Unlike SWHE, a recent new method called TFHE (Chillotti et al., 2020) provides a very efficient
bootstrapping operation (∼ 16ms/per gate). As a downside, this has to be applied after every gate
computation. The bootstrap means we can compute DNN without computation steps limitation like
SWHE. Also, the model privacy can be guaranteed as we can do computations between ciphertexts.
Previous works (Sanyal et al., 2018; Bourse et al., 2018) show that binary neural network can be
easily adapted to this encryption protocol. Yet, these works only test on MNIST for proof-of-concept
and some tricks proposed is not suitable for recent BNN advances.

In this paper, we first propose a new set of evaluation circuits to enable FHE inference for any modern
BNN neural network. We find traditional BNN computation complexity metrics (i.e., BOPs (Martinez
et al., 2020) or FLOPs) are not suitable for BNN inference under TFHE (Appendix D). As such, we
define a new metric called gate ops, which is the required gate operations in a BNN inference using
our proposed FHE evaluation circuits. Using gate ops, we identify that the computation bottleneck of
BNN evaluation under TFHE is the addition or popcount operation (Fig. 1(a)). The number of gates
in the adder tree for popcount grows exponentially to the length of input bits and takes up to 99.1%
of the gate ops in XNOR-LeNet-5 (Fig. 1(b)). Inspired by this observation, we design a new BNN
architecture called GateNet. GateNet leverages the group convolution (Zhang et al., 2018) to reduce
the length of input bits for popcount. Also, because the non-linear circuits are not the bottleneck
of FHE inference for BNN, GateNet incorporates a more advanced non-linear function (Liu et al.,
2020b) to mitigate the accuracy loss compared to floating-point DNN. Our result shows that GateNet
can yield 13.0×/28.5×/66.4× speedup compared to the state-of-the art BNNs under TFHE inference
on MNIST/CIFAR-10/ImageNet while preserving a high task accuracy.

2 PRIVACY GUARANTEES
A common way for modern DNN evaluation is through machine learning as a service (MLaaS)
provided by cloud servers as shown in Appendix C Fig. 4. In public-key encryption, the model
vendors send the evaluation function f and encrypted model parameters E(M,kpub) to cloud, the
client i sends its data E(xi,kpub) to the cloud. By leveraging FHE, the cloud can compute � which
satisfies E(xi)�E(M) = E( f (xi,M),kpub). After the cloud finishes the model inference, the client
can decrypt the result using the private key kpri: D(E( f (xi,M),kpub),kpri)) = f (xi,M).

During the evaluation, GateNet provides the following privacy guarantees: (P1) The cloud server
(and any other party) does not know the client data. (P2) The cloud server (and any other party) does
not know the model parameters except for the evaluation function f .

Leveraging BNN and TFHE, GateNet has computation advantages which are listed below: (C1)
Require no third party in the computation. (C2) Require only two rounds of communications. The
client and model vendors can stay offline during the model evaluation. (C3) Allow the server to
update evaluation function f without communicating with clients. (C4) Apply no computation
approximation. That means the computation result will not be affected by the noise accumulation in
the encryption protocol. (C5) Support any non-linear layers. (C6) Report evaluation on CIFAR-10
and ImageNet to show the scalability of proposed method. The comparison of GateNet and previous
methods regarding the above privacy guarantees and computation advantages are shown in Table 1.

Table 1: Comparison of privacy-preserving DL evaluation works in terms of the privacy guarantees
and computation advantages.

Prior Work Protocol
Privacy

Guarantee
Computation
Advantages

P1 P2 C1 C2 C3 C4 C5 C6
Cryptonet (Gilad-Bachrach et al., 2016), Faster CryptoNet (Chou et al., 2018) HE X X X X X

Gazella (Juvekar et al., 2018) HE, GC X X X
MiniONN (Liu et al., 2017), SecureML (Mohassel & Zhang, 2017) HE, GC X X X

XONN (Riazi et al., 2019), DeepSecure (Rouhani et al., 2018) GC X X X X
DINN (Bourse et al., 2018) HE X X X X
SHE (Lou & Jiang, 2019) HE X X X X X X X

TAPAS (Sanyal et al., 2018) HE X X X X X X X
GateNet HE X X X X X X X X

3 METHOD
Evaluation Circuits. BNNs (Courbariaux et al., 2016) apply binarized (+1/-1) activation and weights
in convolution and convert the original multiplications into XNOR operations for efficient evaluation.
Traditional BNNs use a sign function as the non-linear function between each convolution layer. Most
recently, a more accurate BNN named ReActNet (Liu et al., 2020b) mitigates the accuracy loss using
new activation functions (i.e., PRelu and Rsign) as shown in Fig. 2 (b, c). In this work, we design a set
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Figure 1: (a) Gate ops v.s. input bit length of adder tree/comparator/shifter/MUX 2-n. (b) A
breakdown of gate ops in LeNet-5 and GateNet. (c) normalized gate ops comparison between
LeNet-5 and GateNet.
of evaluation circuit (Fig. 2) for traditional sign functions and also recent PRelu/Rsign to enable any
BNN inference using TFHE. By quantizing the β in the non-linear function and batch normalization
in Fig. 2 to 2n, integer multiplications can be fulfilled by using n-bit shifters. The circuit-level details
and other evaluation circuits (e.g., traditional sign/pooling) are shown in Appendix A.

Identifying Computation Bottleneck Using Gate ops. As discussed in Sec. 1, traditional metrics
(i.e., BOPs (The number of XNOR operations) or FLOPs (Floating-point operations) for evaluating
BNN or DNN is not able to identify the bottleneck of BNN inference in FHE. In Floating-/Fixed-point
DNN evaluation, the cost of multiplication dominates other computation operations. Yet, in the case
of BNN for FHE, the multiplication can be efficiently implemented by using a low-cost XNOR gate
while the popcount dominates the computation.

In this paper, we propose a new metric to evaluate BNN called gate ops. By building up the evaluation
circuit for a given model architecture, we can compute the total number of gates to evaluate the
BNN. Gate ops reveals the real latency for evaluation BNN under FHE. Breakdowns of gate ops for
XNOR-LeNet-52 and GateNet is shown in Fig. 1 (b). The gate ops for popcount dominates other
operations under TFHE due to the exponential size of the required adder tree (Fig. 1(a)). The key
insight of designing GateNet is to reduce the length of input bits to the popcount. This will also
reduce the logic gates used in non-linear and batch normalization (or affine) operations due to the
lower bitwidth of the popcount result (Equations shown in Appendix A).

Design Method of GateNet. To reduce gate ops in traditional BNNs, we introduce GateNet, that
minimizes the gate ops while keeping a high task accuracy. The building block of GateNet is shown
in Appendix C Fig. 5. GateNet leverages group convolution in ShuffleNet (Ma et al., 2018; Zhang
et al., 2018) to reduce the input bits to popcounts and in turn reduce the depth of adder trees in the
BNN. Note that the original group convolution is used to reduce the overhead of multiplication in
floating-point DNN. Here, the group convolution is applied for a completely different goal (e.g.,
reducing popcount overhead). The shuffle operations are essential to the task accuracy as it allows
information to flow between groups. During GateNet’s evaluation under TFHE, this can be fulfilled
by simply changing the position of the ciphertext during evaluation. Also, because the non-linear
functions are not the computation bottleneck in BNN under TFHE, GateNet applies more advanced
non-linear functions (i.e., Psign and PRelu (Liu et al., 2020b)) to increase the task accuracy. Different
from ShuffleNet building block, GateNet adds residual link inside each building block as suggested
by (Liu et al., 2020a). The residual links can be fulfilled by using low bit-widith adder.

For general BNNs, the first and last layers are critical to the task accuracy. We build a fully-binarized
network (denoted as All or A) and a network where only the first (f)/last (l) layers are floating-point
(denoted as Semi or S f ,l . S f means only the first layer is floating-point).

2https://github.com/jiecaoyu/XNOR-Net-PyTorch/blob/master/MNIST/models/
LeNet_5.py.
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Figure 2: Evaluation Circuits of GateNet to fulfill BNN inference, which includes evaluation circuit
for: (a) Batch normalization or affine function. (b) PRelu function. (c) Psign function. (d) Popcount
operation. ‘ha’ in the adder tree denotes half-adder. ‘MUX’ refers to a multiplexer.

4 EXPERIMENTS

Experiment Setup and Training Details. We test the task performance of GateNet on three datasets
(MNIST/CIFAR-10/ImageNet) to show its scalability. Besides the task accuracy, we also report the
gate operations to prove its capability in reduce gate ops. Due to the fact that BNN is very easy to
overfit (Zhu et al., 2019), we split the training process into three stages. 1) The activation is binarized
and the weights are floating-point. The weight decay is 1e-5. 2) Then, we binarize both the weights
and input activation (weights initialized from the first step). The weight decay is zero. 3) We further
fine-tune the model by quantizing the β in each affine function and non-linear function to avoid
integer multiplication. The learning rate and batch size settings for CIFAR-10/ImageNet follow the
implementation of XNOR-Net and ReActNet (Liu et al., 2020b), respectively.
Results. The comparison of GateNet with previous BNNs methods for TFHE is shown in Table 2.
For MNIST/CIFAR-10, GateNet can reduce the gate ops up to 92.3%/96.5% compared to binarized
LeNet-5/ReActNet while achieving a high task performance (98.3%/84.6%). Previous work using
BNN for TFHE (i.e., TAPAS), can not preserve the task accuracy and is not scalable to large datasets.
The tricks proposed in TAPAS are orthogonal to our method. For ImageNet, GateNet can achieve
66/893× speedup over ReActNet/BENN while keep a high task accuracy (61.8%). Although the
execution time of GateNet (∼4500/14000 hours) on a single 2-core CPU for ImageNet is not practical
for commercial products, the execution of BNN can be easily paralleled across multiple CPUs and
many GPU acceleration libraries (Dai & Sunar, 2015) for FHE are under construction.

Table 2: Comparison between GateNet with other BNN baselines under TFHE inference.

Models Type
Gate

ops (Million) popcount XNOR
Other
ops†

Projected
Time (h)*

Accuracy ‡

(Top-1 %)

M
N

IS
T XNOR-LeNet-5 A 953.26 944.16 5.69 3.40 4236.7 99.2

TAPAS A 825.71 745.80 79.62 0.30 3669.8 98.6
GateNet-A A 73.56 20.43 2.94 50.19 326.9 98.3
GateNet-S S f ,l 9.92 1.40 0.73 7.79 44.1 98.8

C
IF

A
R

-1
0

ReActNet (Bi-real) (Liu et al., 2020b) S f ,l 68187.73 67462.87 610.27 114.58 303056.6 85.8
DSQ (Gong et al., 2019) S f ,l 68117.27 67462.87 610.27 44.12 302743.4 84.1

DoReFaNet (Zhou et al., 2016) S f ,l 68084.23 67462.87 610.27 11.08 302596.6 79.3
FracBNN-1-bit (Zhang et al., 2021) S f 5296.66 5205.50 51.6096 39.55 23540.7 85.9

GateNet-S-1.0× S f ,l 882.13 669.36 54.69 158.08 3920.6 80.5
GateNet-S-1.5× S f ,l 2388.38 2028.19 123.07 237.12 10615.0 84.6
GateNet-S-1.5× S f 3454.48 3076.75 137.21 240.51 15353.2 84.1

Im
ag

eN
et

XNOR-AlexNet (Rastegari et al., 2016) S f ,l 2815.85×103 2773.84×103 28.32×103 13.70×103 12514.9×103 48.6
BENN-SB-3 (Zhu et al., 2019) S f ,l 8447.56×103 8321.51×103 84.96×103 41.10×103 37544.7×103 53.6

ReActNet (Bi-real) (Liu et al., 2020b) S f ,l 209.05×103 206.78×103 1.88×103 0.40×103 929.1×103 65.9
Bi-RealNet-18 (Liu et al., 2020a) S f ,l 208.77×103 206.78×103 1.88×103 0.12×103 927.8×103 56.4

GateNet-S-1.0× S f ,l 1.01×103 0.45×103 0.08×103 0.48×103 4.5×103 49.8
GateNet-S-2.0× S f ,l 3.15×103 1.94×103 0.29×103 0.92×103 14.0×103 61.8

* We report the total execution time through linear projecting based on the evaluation time of average gate (16ms on a 2-core CPU).
† Other ops includes pooling / residual / Non-linear function / Batch Normalization.
‡ The accuracy of other BNN methods do not quantize the β in affine functions.

5 CONCLUSIONS

In this work, we propose a set of new evaluation circuits function to enable any BNN inference under
TFHE encyrption protocol. Our settings consider the privacy of both model parameters and client
data. With a new proposed metric for BNN inference called gate ops, we identify the input bits to
the popcount operations is the computation bottleneck during TFHE evaluation. As such, we build
GateNet by leveraging group convolutions to reduce the adder tree depth and advanced non-linear
functions to mitigate accuracy loss. Experiment results show that GateNet can greatly reduce the gate
ops in TFHE inference while preserving a high task accuracy.
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A CIRCUIT DETAILS

The details of a 4-bit comparator/ a 4-bit shifter / a 4-bit adder are shown in Fig. 6. The number of
gates for each circuit can be computed as follows:

Comparator: Comparators are used in MaxPooling and PRelu/Psign operators. A 4-bit Comparator
computes if A > B is shown in Fig. 6(b). Suppose that an n-bit comparator requires cn gates, we can
derive that cn = cn−1 +n+3, with c1 = 1.

Adder: The number of gates for a half adder and a full adder is 2 and 5 respectively. When the input
bit-width is increased by 1, we need to add one more full adder (5 gates). Thus, we can derive the
number of gates for an i bit adder is 5i−3.

Adder Tree: Considering the adder tree structure shown in Fig. 2(d), suppose the adder tree structure
with 2n half adders have an gates in total. We can derive that an = 2an−1 +5(n+1)−3 = 2an−1 +
5n+2, with a1 = 2. In this work, for x-bits adder tree input where x 6= 2k,k ∈ Z, we will round x to
the 2n where 2n−1 < x≤ 2n.

2-n MUX: A 2-n multiplexer (MUX) can do selection from two n-bit integers. It is used in Maxpool-
ing and RRelu function. The circuit detail is shown in Fig. 6(d). For a 2-n MUX, the required number
of gates to build the logic is 4+3n.

p-q Shifter: A p-q shifter can shift a p bits integer q times. This module is used in PRelu/affine
function and average pooling, As shown in Fig. 6(c), the required bit for an n-m shifter would be:
(4+3p)q. In this work, we quantize the β to 2n where n ∈ [−3,3], that means n = 3 our evaluation
system.

The evaluation circuits for pooling and traditional sign function are shown in Fig. 3. For BNN (Cour-
bariaux et al., 2015; 2016) with batch normalization ( f (x) = βx+ b) followed by a sign function
(BN+sign), The Batch normalization can be removed: x′i = sign(xi +T ),T = b

β
.

Figure 3: The evaluation circuits for (a) Batch normalization + sign function. (b) Sign function. (c)
AveragePooling. (c) MaxPooling.

B MACHINE LEARNING AS A SERVICE (MLAAS).

An illustration of the MLaaS is shown in Fig. 4. Most previous works guarantee the client data
privacy while assuming the model provider and cloud are the same party. Yet, in many scenarios, this
is not true. For example, medical institutes / corporations have many training data to build a model.
But they don’t have enough cloud computing resources for MLaaS. In this work, we consider a more
general usage of MLaaS that the model provider and cloud are different parties.

C GATENET BUILDING BLOCK AND ARCHITECTURE SETTING.

The channel and layer settings for MNIST follow the ShuffleNet-G1-1.0× in (Zhang et al., 2018)
(also remove stage 2 and stage 3 while keeping only the stage 1 layers). GateNet for CIFAR-10
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Figure 4: Overview of using GateNet for MLaaS.

follows the ShuffleNet-G3-1.0/1.5× settings (i.e., g1,g2 = 3 in Fig. 5). We remove the bottom
maxpooling layer for CIFAR-10 and MNIST due to the small size the input images. GateNet for
ImageNet follows the ShuffleNet-G3-1.0/2.0× settings in (Zhang et al., 2018). The building block of
GateNet is shown in Figure 5.

Figure 5: The building blocks of GateNet: (a) Normal block (b) Reduction block.

D WHY GATE OPS IS NOT SUITABLE FOR HARDWARE?

For FPGA design, the evaluation circuit will be synthesized into look-up tables (i.e., multiplexers) to
fulfill the functionality of the circuit. Assuming an FPGA built on 6-3 MUXs, the 3-bit/3-bit XNOR
has the same cost as a 6-bit popcount. However, in TFHE, the circuit represents by gates must be
computed in a gate-level, and a 6-bit popcount is much more expensive than a 3-bit/3-bit XNOR
operation.

For real hardware, such as CPU or GPU, the popcount and XNOR operations are compiled into
instructions and executed on the hardware which is not relevant to the gate ops. The registers or
flip-flops in real hardware allow a more efficient popcount design compared to the adder tree.
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Figure 6: Circuit details of each module in Figure 2: (a) 4-bit adder (b) 4-bit comparator (c) 4-1
shifter (d) 2-4 MUX. Note that for larger bitwidth input, the user only need to cascade the repetitive
logic.
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