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ABSTRACT

This paper studies the constrained/safe reinforcement learning (RL) problem with
sparse indicator signals for constraint violations. We propose a model-based
approach to enable RL agents to effectively explore the environment with un-
known system dynamics and environment constraints given a significantly small
number of violation budgets. We employ the neural network ensemble model
to estimate the prediction uncertainty and use model predictive control as the
basic control framework. We propose the robust cross-entropy method to op-
timize the control sequence considering the model uncertainty and constraints.
We evaluate our methods in the Safety Gym environment. The results show
that our approach learns to complete the tasks with a much smaller number
of constraint violations than state-of-the-art baselines. The code is available at
https://github.com/liuzuxin/safe-mbrl.

1 INTRODUCTION

Reinforcement learning (RL) has achieved great success in a wide range of applications (Mnih
et al., 2013; Filos et al., 2020). However, in the course of learning, it is usually hard to prevent
the agent from getting into high-risk states which may lead to catastrophic results, especially for
safety-critical applications. Therefore, it is important to develop safe reinforcement learning al-
gorithms for real-world applications, which allow them to complete tasks while satisfying certain
safety constraints. One example problem is the PointGoal task setting in the Safety Gym sim-
ulation environment (Ray et al., 2019), where a robot needs to navigate to the goal while avoiding
all of the hazard areas. The dynamics model of the environment is unknown, and the robot only
receives indicator signals when violating constraints. The observations of the robot are sensor data,
such as a LiDAR point cloud, so it is hard to analytically express the mapping from observation
space to the constraint violation. Thus we are interested in the hardest cases where both dynamics
and constraints are needed to be learned from data without additional info.

The challenges of solving the above problem are threefold: First, pure model-free, safe RL algo-
rithms, such as Lagrangian-based methods (Stooke et al., 2020; Altman, 1998) and projection-based
optimization methods (Achiam et al., 2017) are not sample efficient. They need to constantly violate
safety constraints and collect a large number of unsafe data to learn the policy, which restricts the
application in safety-critical environments. Second, the task objective and the safety objective of an
RL agent may contradict each other, which may corrupt the policy optimization procedure for meth-
ods that simply transform the original reward to the combination of reward and constraint violation
cost (Geibel & Wysotzki, 2005; Gaskett, 2003). Finally, the black-box constraint function and un-
known environment dynamics model make the problem hard to optimize. Therefore, most existing
model-based safe RL approaches either assume a known prior dynamics or a known structure of the
constraint functions (Berkenkamp et al., 2017; Koller et al., 2018; Pham et al., 2018). As far as we
are aware, very little research has been done to investigate situations in which the dynamics and the
constraint are both unknown.

We present a safe model-based RL algorithm with a robust cross-entropy (RCE) method to achieve
near-optimal task performance with near-zero constraint violation rates. We propose a solution to
learn both the dynamics model and constraint model from limited samples and weak constraint
violation indicator signals. Our approach is able to achieve state-of-the-art performance in terms
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Algorithm 1 Robust Cross-Entropy Method for RL
Input: Initial distribution parameter Θ ; number of samples N ; number of elites k; initial state s0

Output: Solution X ∗ with the highest reward
1: while The stop criteria is not satisfied do
2: Draw N samples from the initial distribution: X1,X2, ...,XN ∼ N (Θ)
3: Evaluate each sample Xi by Eq.2 to get the estimation of reward r(Xi; s0) and cost c(Xi; s0)
4: Select the feasible set Ω ∈ {Xi}Ni=1 based on the cost estimation
5: if Ω is empty then
6: Sort {Xi}Ni=1 in ascending order w.r.t the cost. Let Λk be the first k elements
7: else
8: Sort Ω in descending order w.r.t the reward.
9: Let Λk be the first k elements of Ω if |Ω| > k, otherwise let Λk be Ω

10: end if
11: Update Θ by maximizing the likelihood given Λk: Θ←− arg maxθ

∏
X∈Λk

p(X ; θ)
12: end while
13: return X ∗ with highest reward in Λk

of constraint violation rate and accumulated expected reward in the Safety Gym environment (Ray
et al., 2019).

2 METHOD

Model Learning. Since the dynamics f(st, at) and the cost (constraint violation) model c(st+1)
are both unknown, we need to infer them from collected samples. We use an ensemble of neural
networks to learn the dynamics (Chua et al., 2018) and estimate the epistemic uncertainty (subjective
uncertainty due to a lack of data) of the input data. Any binary classification model could be used
to approximate the cost model because it is an indicator function. In light of robustness towards
limited samples, as well as low computational burden, we adopt a gradient boosting decision tree-
based ensemble method - LightGBM (Ke et al., 2017) - to learn the cost model.

MPC with Learned Models. We use Model Predictive Control (MPC) as the basic control frame-
work for our constrained model-based RL approach. The objective of MPC is to maximize the
accumulated reward w.r.t a sequence of actions X = (a0, ..., aT ), where T is the planning horizon.
The first action is applied to the system, new observations are received, and the same optimization
procedure is performed again. In our safe RL setting, additional constraints are introduced so that
the original objective becomes a constrained optimization problem. Denote st as the state at time t,
γ as the discount factor, r(st+1) as the reward function, we aim to solve the following problem:

X = arg max
a0,...,aT

E
[ T∑
t=0

γtr(st+1)
]

s.t. st+1 = f(st, at), c(st+1) = 0, ∀t ∈ {0, 1, ..., T − 1}

(1)

Robust Cross-Entropy Method. To directly solve the constrained optimization problem in Eq. 1,
we propose the robust cross-entropy method (RCE) by using the trajectory sampling (TS) tech-
nique (Chua et al., 2018) to estimate reward and constraint violation cost. Given the initial state s0,
we can evaluate the accumulated reward and cost of the solution by:

r(X ; s0) =

T∑
t=0

γt
( 1

B

B∑
b=1

r(sbt+1)
)
, c(X ; s0) =

T∑
t=0

βt max
b
c(sbt+1) (2)

where sbt+1 = f̃θb(sbt , at),∀t ∈ {0, ..., T − 1},∀b ∈ {1, ..., B}, γ and β are discounting factors,
and B is the ensemble size of the dynamics model. The intuition of TS is to consider the worst-case
scenario of constraint violations among all sampled future trajectories with dynamics prediction
uncertainty. Our RCE method first selects the feasible set of solutions that satisfy the constraints
based on the estimated cost in Eq. 2. Then, we sort the solutions in the feasible set and select the top
k samples to use when calculating the parameters of the sampling distribution for the next iteration.
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(a) Point Goal1 Env (b) Point Goal2 Env (c) Car Goal1 Env (d) Car Goal2 Env

Figure 1: Experiment Environments

Figure 2: Learning curves. The upper row figures are the reward trends and the lower row figures
are the cost trends. From left to right the tasks are: Point Goal1, Point Goal2, and Car Goal1.

If all the samples violate at least one constraint, we select the top k samples with the lowest costs.
The RCE algorithm is shown in Algorithm 1. The entire training pipeline of our MPC with RCE is
presented in Algorithm 2.

3 EXPERIMENT VALIDATION

Algorithm 2 MPC with RCE
Input: Initial collected data D; RCE parameters P

1: while The performance is not converged do
2: Train the dynamics f̃ and cost model c̃ given D
3: for Time t = 0 to EpisodeLength do
4: Observe state st from the environment
5: Optimize actions by Alg. 1: {a∗i }

t+T
i=t ←− RCE(P, st)

6: Apply the first action a∗t in {a∗i }
t+T
i=t to the system

7: Observe next state st+1 and cost signal c(st+1)
8: Update data buffer: D ←− D ∪ {st, at, st+1, c(st+1)}
9: end for

10: end while

Simulation Environment. We
evaluate our safe RL approach
in the OpenAI Safety Gym envi-
ronment (Ray et al., 2019) with
the Goal task. Each experiment
setting involves a robot (red ob-
ject in Fig. 1) that must navigate
a clustered environment to ac-
complish a task while avoiding
contact with obstacles. When
the robot enters the goal circle
(green circle), the goal location
is randomly reset. A bonus of
rt = 1 is given to the robot for
reaching the goal. Hazards (blue
circles) are dangerous areas to
avoid. Vases (teal cube) are ob-

jects initialized to be stationary but movable upon touching. The agent is penalized for entering
Hazards or touching Vases. If the agent violates the safety constraint, it will receive a cost equals 1.
Level 2 tasks (Fig. 2bd) are more difficult to solve than level 1 (Fig. 2ac) task since there are more
constraints presented.
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Table 1: Comparison of total constraint violation number for the first 10000 training steps.

Task
Method MPC-RCE MPC-CEM MPC-random

Point Goal 1 16.00 184.33 169.0
Point Goal 2 231.00 746.00 600.67
Car Goal 1 7.00 103.67 139.33
Car Goal 2 96.00 578.00 509.33

Baselines. We use the official baseline methods provided by the Safety Gym environment (Ray
et al., 2019). The trust region policy optimization (TRPO) algorithm (Schulman et al., 2015) is an
unconstrained baseline that could give us intuition about the performance and constraint violations
when we only care about the reward and not the cost of violating constraints. We use the Lagrangian
version of TRPO (TRPO-Lagrangian) and the constrained policy optimization (CPO) (Achiam et al.,
2017) as two model-free constrained reinforcement learning baselines. For model-based safe RL
baselines, we adopt the constrained extension of existing random shooting and the cross-entropy
method (CEM) together with the MPC framework. We name the two methods as MPC-random and
MPC-CEM.

Metrics and training. We compare different approaches in terms of episodic accumulated reward
and episodic cost (Ray et al., 2019), which is defined as the total constraint violation number in each
episode. Method A is better than B if A could achieve lower episodic cost than B. If both
A and B achieve the same cost, then the one with higher episodic reward is better. We also
compare the sample efficiency and the total cost during training. For each algorithm, we evaluate
them for each task with 3 different random seeds. For the detail about specific hyper-parameters,
please refer to the supplementary material.

Results. Since RL agents learn by trial and error and we assume no prior knowledge of the environ-
ment, it is inevitable to violate the constraints in the early stage of training. However, our goal is to
reduce the unsafe samples as much as possible because collecting unsafe data could be expensive in
some cases. Such setting is practical in real-world applications. Here we provide two examples: 1.
The cost to enter an ‘unsafe’ zone is not deadly but is not desired. For example, a tomato-picking-up
robot damages tomatoes, which is not harmful to itself and people, but we still regard it as unsafe
because it should be avoided in reality. 2. We can train the robot by historical unsafe data (such as
public dataset) or in the simulator, which is not harmful during training. Then we can deploy trained
safe policies to real-world situations.

Fig. 2 shows the learning curves of reward and constraint violation cost in Point Goal1, Point Goal2,
and Car Goal1 tasks. The reward and cost are averaged among 3 experiments with the same hyper-
parameters but different random seeds. The solid line is the mean value, and the light shade repre-
sents the area within one standard deviation. We use dashed lines to represent the value at conver-
gence for model-free approaches, as they require several orders of magnitude more interaction steps
to obtain satisfactory performance.

From the figure, it is apparent that our MPC-RCE approach learns the underlying constraint function
very quickly to avoid unsafe behaviors during the exploration and achieves the lowest constraint
violation rate, though its reward is slightly lower than other methods. It is reasonable because the
best policy to maximize the task reward is to ignore the constraints and let the robot go straight
towards the goal. So MPC-CEM and MPC-random sacrifice the safety constraints satisfaction
performance to obtain the gain on task reward. A more intuitive demonstration could be found in
our supplementary video. However, as suggested in Safety Gym benchmark (Ray et al., 2019),
we first compare the constraint satisfaction performance of different methods, and if they are the
same, then we compare the task rewards. Therefore, our MPC-RCE is the best among all baselines
because its constraint violation counts are always less than other methods, while the task rewards
are comparable to other relatively ’unsafe’ approaches.

Table 1 demonstrates the constraint satisfaction performance during the training procedure. For
model-free methods, the number of constraint violations is several orders of magnitude larger than
model-based approaches, so we do not list the result here. From the table, we can see our approach
achieves much lower cost than the other methods, which means the MPC-RCE agent requires the
minimum number of unsafe samples to converge. As far as we are aware, our method can achieve
the best constraint satisfaction performance in these Safety Gym tasks.
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A APPENDIX

A.1 DISCUSSION ABOUT THE SAFETY GYM ENVIRONMENT AND THE TASK SETTING

Safety Gym environments use the MuJoCo physics engine as the backbone simulator. Each environ-
ment and task is inspired by a practical safety issue in robotics control. The observation spaces used
in the original Safety Gym environment includes standard robot sensors (accelerometer, gyroscope,
magnetometer, and velocimeter) and pseudo-lidar (each lidar sensor perceives objects of a single
kind and is computed by filling bins with appropriate values). The observation space used in our
approach is different from the default Safety Gym options in that we pre-process the sensor data to
get rid of some noisy and unstable sensors, such as the z-axis data of accelerometer. We use the
relative coordinates of the perceived objects instead of the pseudo-lidar readings because the former
representation is more friendly to dynamics model learning, which is important for model-based RL.

Both robots used in our experiment have two-dimensional continuous action spaces and all actions
are linearly scaled to [−1,+1]. We also performed careful hand-tuning of some MuJoCo actuator
parameters during sensor analysis, since robust and responsive control is critical to robot operations
in both the simulation environment and the real world.

Our work in the Safety Gym environment has implications for real-world applications. The Goal
task in our experiment resembles the setting of the delivery robot and other domestic robots, where
the robot has to navigate around static obstacles such as furniture to reach the goal. Additionally,
since the state representation in our experiments is directly derived from sensor information and the
control input of our environment to the robot is very similar to that of real-world situations, our
model-based RL approach in the simulation environment could serve as an important pre-training
for the real-world applications. Given that a certain amount of unsafe data is required to train our
model, it would be unrealistic to have the real robot repeatedly violate the constraints to collect such
data. Therefore, the training in the simulator is an important step for the model to be transferable to
real wold safety-critical applications.

A.2 TRAINING DETAIL

Dynamics model: We use the same architecture and hyper-parameters of each neural network in the
ensemble dynamics model. Each neural network is of 3 layers with ReLU activation and each layer
is of 1024 neurons. All the training parameters for one task are the same for MPC-RCE, MPC-CEM,
and MPC-random. The batch size is 256, the learning rate is 0.001, the training epochs are 70, and
the optimizer is Adam. The ensemble number is 4 for Point robot-related tasks and is 5 for Car
robot-related tasks. Each neural network model in the ensemble is trained with 80% of the training
data to prevent overfitting.

LightGBM classifier: We use LightGBM to predict the constraint violation given a state in our
RCE method and all the model-based baselines. We use the default gdbt boosting type and 400
base estimators. Each base estimator has a maximum depth of 8 and 12 leaves. The learning rate is
0.3 and all other hyper-parameters are the default value.

RCE, CEM, and random optimizer: We use the same hyper-parameters for RCE and CEM except
that RCE has a discount value of γ = 0.98 for reward and discount value of β = 0.4 for cost while
CEM only has one discount value γ = 0.98 for the combination of reward and cost. We sample
N = 500 solutions for each iteration of RCE and CEM and select top k = 12 elite samples to
estimate the distribution parameters for the next iteration. If the iteration number exceeds 8 or the
sum of the variance of elite samples is less than ε = 0.01, the optimization procedure stops and
returns the best solution that has been found so far. To fairly compare with RCE and CEM, we use
5000 samples for the random shooting method so that the maximum number of samples is at the
same order of magnitude. The planning horizon is T = 8 for all methods.

TRPO, TRPO-Lagrangian, and CPO: We use the same hyper-parameters offered in the open-
sourced code from the baseline method for the Safety Gym simulation environment (Ray et al.,
2019). All hyperparameters are kept the same for all three model-free baseline methods. The actor-
critic neural network model has 2 linear layers of 256 hidden neurons in each. The discount factor
γ = 0.99. The target cost limit is 10 with penalty term λ initialized to be 1 and a penalty term
learning rate of 0.05. The target KL divergence is 0.01, and for the value function learning, the
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learning rate is 0.001 with 80 iterations. For each experiment, the total number of environment
interactions is 1e7 and 3e4 steps for each training epoch.

A.3 MORE RESULTS

The influence of the target cost value for TRPO-Lagrangian and CPO. Since the target cost
limit value must be set in advance before training, we empirically study the performance of TRPO-
Lagrangian and CPO with different target values in the Point Goal2 environment. The learning
curves are shown in Fig 3 and Fig 4. We can see that the task performance is negatively correlated
with the target cost, and there is a dramatic task performance drop if we limit the target cost to
a small value. Compared with model-based approaches, CPO and TRPO-Lagrangian can hardly
achieve comparable task performance with the same level of constraint violation rate.

Figure 3: Learning curves of reward and cost for CPO with different target cost value.

Figure 4: Learning curves of reward and cost for TRPO-Lagrangian with different target cost value.

RCE, CEM, and random optimizer comparison. To better compare the performance of RCE,
CEM, and random optimizer, we fix the dynamics model, cost model, and random seed to test in
the same Point Goal1 environment. The smoothed reward and cost curves are shown in Fig. 5. We
can see our RCE approach achieves the lowest cost throughout the testing phase while maintaining
comparable task performance compared to CEM and random. It is interesting to note that there is a
reward drop for RCE and a cost jump for CEM and random methods at around 1000 steps, which
means the environment layout in this episode is difficult. Compared to CEM and random methods,
which fail to explore the environment safely, our RCE approach is able to achieve zero constraint
violation.
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Figure 5: Testing curves of reward and cost with fixed learned models.

Uncertainty-aware dynamics model selection. The dynamics model module in this paper can be
replaced by any other uncertainty-aware models in principle, and there are some alternatives other
than the ensemble method, such as the dropout-based approximate Bayesian inference method (Gal
& Ghahramani, 2016). We implemented and tested the dropout-based method but found that the
prediction performance is worse than the ensemble method, so we use the ensemble method in our
cases.
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