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ABSTRACT

From a safety perspective, a machine learning method embedded in real-world
applications is required to distinguish irregular situations. For this reason, there
has been a growing interest in the anomaly detection (AD) task. Since we cannot
observe abnormal samples for most of the cases, recent AD methods attempt to
formulate it as a task of classifying whether the sample is normal or not. However,
they potentially fail when the given normal samples are inherited from diverse se-
mantic labels. To tackle this problem, we introduce a latent class-condition-based
AD scenario. In addition, we propose a confidence-based self-labeling AD frame-
work tailored to our proposed scenario. Since our method leverages the hidden
class information, it successfully avoids generating the undesirable loose decision
region that one-class methods suffer. Our proposed framework outperforms the
recent one-class AD methods in the latent multi-class scenarios.

1 INTRODUCTION

With the rapid increase in the performance of deep learning-based methods, the demands for apply-
ing this technology are emerging in recent. However, simply adopting it may not be ideal due to the
mismatched label information between the training and test set. A self-driving system, for exam-
ple, should make the best decision on the abnormal scene or status even though it never observed
this condition before. Under this scenario, it is required to detect whether the given data is unseen
(abnormal) or not, to build a reliable and secure machine learning system.

The anomaly detection (AD) task focuses on to identify suspicions or abnormal events. We can
categorize this task into supervised (Liang et al., 2017) or unsupervised (Chalapathy et al., 2017;
Oza & Patel, 2018) by the training strategy. The former train the model with both normal and ab-
normal samples, while the latter use normal data only. Since collecting the abnormal cases is time-
consuming or impossible in the real-world, unsupervised learning gets more attention despite the
superior performance of the supervised scheme. In an unsupervised approach, most of the methods
formulate the task as an one-class classification problem (i.e. classify as normal or not). While such
simplicity works on the well-refined scenarios, they potentially fail when the given normal dataset is
composed of samples from diverse classes (Figure[Ia). Since conventional methods ignore the latent
class information, they tend to draw a single binary decision boundary that loosely covering a wide
range. This could be problematic when the normal dataset contains multiple latent class information.
Can we leverage this semantic knowledge to guide the AD methods to judge the anomalies more
accurately? We believe a different approach is needed.

Base on this assumption, we introduce a latent class-condition-based AD scenario and its bench-
mark datasets. This simulates the circumstance where both normal and abnormal data have multi-
class samples (Figure [Tb). We would like to emphasize that our proposed scenario is realistic; in
the real-world, various (object) classes could be normal, and the abnormal cases could consist of di-
verse classes as well (e.g. street signs of different countries). Because of the nature of our scenario,
the optimal solution needs to generate semantic-aware tight decision boundaries (as in Figure [1b).
However, neither supervised nor unsupervised approaches can handle the scenario properly. For ex-
ample, supervised models cannot be applied since no label is given. Conventional unsupervised AD
methods create a single and loose decision region (since they ignore latent class information). At
this point, one natural question can arise: How can we use latent semantic information? Since the
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Figure 1: Comparison of two AD scenarios. (a) One-class AD scenario where the model creates a
single decision boundary to cover all normal data. Some abnormal samples are misclassified due
to the loose boundary. (b) Our proposed AD scenario. An optimal solution can model latent class-
condition information and draws tight class-wise decision boundaries. For normal samples, each
class is denoted as different shapes. Note that the latent class information are not observable to the
models; only the oracle is able to access this.

latent label is accessible to the oracle (or human) only, we may detour this limitation, for example,
by utilizing the pseudo-latent class label.

To tackle this, we propose a Confidence-based self-Labeling Anomaly Detection (CLAD) frame-
work to bridge the gap between the supervised and unsupervised approaches. We model the latent
class information using self-labeling so that supervised learning can be adapted (Figure 2). To do
this, we first train the feature extraction network following (2016). Then, we cluster the
training samples using the extracted latent feature and allocate pseudo labels via self-labeling
2013). Now the classification network can learn to predict pseudo labels by standard su-
pervised learning. At the inference, we decide whether the test sample is abnormal or not by the
confidence-based AD method (Liang et al. [2017). Since our method leverages the hidden class
information, it successfully avoids the generation of undesirable loose decision regions typically
suffered by one-class methods. Several experiments on latent multi-class scenarios demonstrate that
the proposed method substantially outperforms recent one-class AD methodsﬂ

2 LATENT CLASS-CONDITION ANOMALY DETECTION SCENARIO

Traditional one-class AD methods learn a decision boundary based on the given normal samples
in the training dataset (Figure [Ta). Such one-class strategy is effective when a single class label
is treated as normal alone (and the rest of them are abnormal). However, this assumption may not
hold in a real environment since the normal category can consist of heterogeneous semantic labels.
With this circumstance, conventional one-class AD generates a loose decision boundary to cover all
samples drawn from diverse classes and thus vulnerable to a false negative.

To reduce the gap between the real-world and the one-class AD scenarios, we simulate the scenario
environment where the latent sub-classes exist implicitly (Figure [Tb). With this environment, it is
crucial to learn a decision boundary by seeing not only the normality of the data samples but also its
semantics. Note that such class information is not observable, thus the AD framework may require
learning the semantic representation in an unsupervised or self-supervised manner.

3 CONFIDENCE-BASED SELF-LABELING ANOMALY DETECTION

Before going into the details, let us define the problem statement. We have a training set Xy, =
{xi}lN=1 and a test set (Xye, Yz¢). Xt contains both normal/abnormal samples with corresponding
label Y;¢; O if normal and 1 otherwise. The core idea of our framework is to consider the concealed
semantic information. To do that, we generate the pseudo-label y* € Y* = {1, ..., L}, where the
cardinality of J* is assumed pseudo-class counts. Then, our AD framework inferences atrue y € Y,
based on the classifier F' that is trained with generated pairs (X, Y;%), where Y} = {y;}X,.

'Our code is available atfhttps: //github. com/JuneKyu/CLAD
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Figure 2: Overview of our proposed confidence-based self-labeling anomaly detection framework.
(1) Feature extraction by training the convolutional autoencoder to extract the latent feature z. (2)
Self-labeling via clustering to assign latent class y* to sample x. (3) Train a classifier F' using
(X¢r, Yy) pairs in supervised learning manner. L.;; denotes a classification loss. (4) We perform
anomaly detection by the confidence score of classifying normal sample x to y*.

(1) Feature extraction. First, we train the autoencoder (E and D) with reconstruction loss on train-
ing dataset X3, and calculate the latent feature z using the trained encoder E.

(2) Self-labeling via clustering. We further fine-tune the encoder E to increase the possibility of
assigning a sample x to the given cluster C; by the Kullback-Leibler divergence between the latent
feature z and soft-alignment of C; (Xie et al.,|2016). We simultaneously update the encoder and
cluster assignment and this makes the clustering algorithm to be robust. Then, we assign a label y*
by referring to the allocated cluster C;. Now the X3, have associated pseudo-labels Y;:.

(3) Supervised classification. With (pseudo) latent class labels Y;;. and the normal sample X, a
classifier F' is trained with a standard supervised learning scheme. By referring to the class infor-
mation that is intrinsic in the latent labels, our framework can generate the semantic-aware tight
decision boundaries that envelop each relevant class sample only.

(4) Confidence-based AD. Because of the tight decision boundary by the pairs (X3, Y;%), we argue
that the AD can be viewed as the out-of-distribution (OOD) task. In detail, the OOD sample is
defined as the data where the class label is not included in the training dataset. We assume the label
set V* is a multi-classes label set from Y. Then, we treat (x,y*) as an OOD sample when the
y* € V.. Because the confidence-based algorithms predict the samples as OOD when the classifier
outputs a small probability for all classes, we can safely convert anomaly detection into an OOD
task. (i.e., it is an abnormal sample when y* & V;).

Under these assumptions, we measure anomaly detection scores by adapting the scoring scheme in
ODIN (Liang et al., 2017). We define the score s(x;T',0) = max;p(X;T)(;), where p(x;T') ;) is
output of the classifier F' in each class 7. T is the parameter for the temperature scaling and x is
the input term X = x — ¢(x) perturbed by the reverse FGSM method (Goodfellow et al.,[2014) that
makes the OOD samples more separable. If the score s(x; T, d) is greater than a given threshold 9,
then we predict the ¢ as normal.

4 EXPERIMENT

Baselines. We compare with one-class AD methods: OCSVM (Scholkopf et al.,2001), OCNN (Cha-
lapathy et al., 2017), OCCNN (Oza & Patell [2018), SVDD (Tax & Duin, 2004), and
DeepSVDD (Ruff et al., | 2018). We follow the implementation setups based on the official codes.

Datasets. We use following datasets: MNIST (LeCun & Cortes, 2010), CIFAR-10 (Krizhevsky et al.,
2009), GTSRB (Stallkamp et al., [2012), and Tiny-ImageNet (Russakovsky et al.,|2015)).

We devise the super-categories by merging the semantic labels to simulate our AD scenario. For
example, MNIST is as {Curly, Straight, Mix} and GTSRB based on the semantic mean-
ings of traffic signs. Note that both datasets share a similar domain prior which represents the
text or symbols. For the natural scene datasets such as CIFAR-10 and Tiny-ImageNet, we set as
{Thing, Living}and {Animal, Insect, Instrument, Structure, Vehicle},
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Table 1: Performance comparison on the newly proposed AD scenario with MNIST and GTSRB.

Method MNIST GTSRB
CUR STR MIX | SPDL INST WARN DIRC SPEC REGN

OCSVM 699 874 548 | 663 609 527 607 505 772
OCNN 814 762 602 | 657 657 518 620 527 783
OCCNN 775 783 515 | 593 575 604 564 591 643
SVDD 588 724 526 | 582 551 511 505 569 674
DeepSVDD | 817 822 69.7 | 57.7 69.7 734 593 702 778
CLAD (ours) | 94.0 961 92.6 | 667 665 649 674 622  79.1

Table 2: Performance comparison on our AD scenario with CIFAR-10 and Tiny-ImageNet.

Method CIFAR-10 Tiny-ImageNet
THG LIV | ANML ISCT ISTM STRT VHCL

OCSVM 519 67.7| 63.5 609 502  56.7 55.5
OCNN 58,5 672 | 582 57.1 50.3 51.0 55.1
OCCNN 59.8 625 59.7 624 515 54.2 66.4
SVDD 50.8 614 | 515 51.8 515 50.6 51.9
DeepSVDD 65.0 52.7 59.0 53,5 534 554 53.5
CLAD (ours) | 749 72.8 | 65.9 66.2  55.6 62.0 64.7

respectively. When we evaluate the models, we pick one super-category for training and the rest of
the subsets as a test dataset. Please see Appendix [D|for the detailed settings of the scenario.

Results. Table [I|shows the AUROC of the MNIST and GTSRB datasets. Our framework surpasses
all the one-class AD methods in MNIST. Among them, it is notable that CLAD outperforms others
on Mixed in a huge margin. This scenario is very challenging since it carries complex information
due to the mixed shape of digits such as 2’ or ‘6’. For the GTSRB dataset, our CLAD reaches
the best performance for SPDL, DIRC, REGN and second-best for the rest. The only method
comparable to ours is DeepSVDD. However, it suffers the inconsistent performance (worst score in
SPEC) while our framework shows stable and high performances for all the cases.

To demonstrate the superior performance of CLAD in the complex image domain, we evaluate it on
the CIFAR-10 and Tiny-ImageNet datasets (Table[2). Our framework achieves the best performance
for all the scenarios in CIFAR-10 and four of five cases in Tiny-ImageNet. Similar to GTSRB, the
scores of DeepSVDD are inconsistent; we claim that DeepSVDD is sensitive to the latent class
labels. It maps all the (normal) samples into a single-modal hypersphere (Figure [Ta)), making it
vulnerable to the anomalies that close to the normals in terms of the class information.

5 DISCUSSION & CONCLUSION

We introduced a new aspect of the AD task and proposed a confidence-based AD framework. We
assume that (ab)normal categories can have (unobservable) multi-class samples in contrast to the
one-class AD scenarios. We believe that our scenario and method are practical in real world. One
possible usage is for the industrial environment. When the normal sensor signals with various range
can be altered by the surroundings, conventional one-class AD methods suffer spurious detection.

Since our framework trains a classifier using self-labeling, extracting the right representation of the
data sample is crucial. However, most of the feature extraction methods have difficulty with handling
a dataset bias (Bahng et al.,|2020). As future work, we will focus on the disentanglement of the scene
context with a key concept of the object discovery (Burgess et al., 2019).
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A RELATED WORK

One-class anomaly detection. Most of the anomaly detection (AD) methods treat a task as a binary
classification: normal and abnormal. Under this assumption, OCSVM (Scholkopf et al.,2001) learns
a decision boundary with normal samples only. OC-NN and OC-CNN (Chalapathy et al., 2017} |Oza
& Patel, [2018)) are the earlier attempts on using a deep learning-based approach with an unsuper-
vised learning regime. However, unlike OCSVM, these works have the potential risk to be a trivial
solution due to the insufficient theoretical analysis. That is, the learnable parameters may become a
trivial solution when the given data samples are all normal. On the other hand, SVDD (Tax & Duin)
2004) and DeepSVDD (Rulff et al., 2018) successfully avoid such trivialness by the theoretical ba-
sis. Although the aforementioned methods have shown promising results, they are limited to the
one-class scenario which is not suitable for real-world applications. In contrast, our proposed task
assumes that the data points could be allocated into the various classes, which is more realistic.

Self-labeling. The self-labeling is one of the most rapidly developing approaches in the self-
supervised learning context (Dosovitskiy et al., 2015;|Doersch et al., | 2015;Noroozi & Favaro, [2016;
Noroozi et al.,[2017; [Doersch & Zissermanl 2017;|Gidaris et al.,[2018)). Base on the success of self-
supervised learning, recent works attempt to create a self-label using traditional clustering methods.
For example, DeepCluster (Caron et al., 2018)) first makes initial self-labels using a convolutional
network and iteratively updates the network parameters with the re-assigning process by the cluster-
ing algorithms. |Asano et al.| (2019) extended DeepCluster making it to learn visual representation
and clustering simultaneously based on the information theory as such maximizing the information
between the labels and the input data. Although self-labeling has shown outstanding performance
in the computer vision field, to the best of our knowledge, none of the studies exists to apply this
strategy to the anomaly detection field.

Out-of-distribution detection. Out-of-distribution (OOD) detection is the task to discriminate the
samples whether they are from the training distribution or not. Because the deep learning-based
classification model tends to predict as a wrong class with high-confidence when the given test sam-
ples are the class not in the training set (i.e. high-confidence problem). To tackle this issue, many
works have been studied on this problem. ODIN (Liang et al.,[2017)) addressed the high-confidence
problem using temperature scaling and an input-preprocessing method from the FGSM (Goodfel-
low et al., |2014). Their method pursues better separating the out-of- and in-distribution samples.
Papadopoulos et al. (2019) proposed an additional loss function from ODIN and applied other ma-
chine learning tasks such as natural language problems. The aforementioned methods rely on the
multi-class labels when training, i.e. supervised approach. This limits the OOD detection methods
difficult to apply to real-world anomaly detection problems.

B MODEL ANALYSIS

In this section, we analyze our proposed method. First, we evaluate CLAD on the previous one-class
AD scenario. Second, we show how our method is robust to the hyper-parameter settings such as the
number of the clusters or the hidden dimension size.

One-class AD. We can view this task as a simplification of our proposed scenario. In one-class
AD, the normal category has a single semantic label only, in contrast to ours which sets the normal
condition to contain multiple class information. We evaluate the methods on MNIST and CIFAR-10
datasets as shown in Table [3] and d] Our CLAD shows comparable results on MNIST to the other
one-class-based AD methods and competes on par with DeepSVDD on the CIFAR-10 dataset.

We would like to note that CLAD is not designed for the one-class AD task. Because of the feature
clustering and label assignment, our method could create fragmented decision boundaries in this
conventional scenario. In contrast, DeepSVDD learns to generate a spherical decision boundary that
tightly wraps the single-class normal samples. However, on CIFAR-10 which may have various
latent semantics within the single class (e.g. different pose, intra-class diversity), DeepSVDD fails
to detect abnormal in some cases (e.g. bird, deer) while CLAD shows consistent scores.

The effects of the hyper-parameters. In our framework, we use feature extraction and clustering
modules. Since these modules are the basis of the self-labeling procedure, we analyze how the hyper-
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Table 3: One-class AD performance on MNIST dataset.

MINIST

Method o 1T 2 3 4 5 6 7 8§ 9
OCSVM 983 995 820 885 916 797 931 934 8390 O3
OCNN 976 995 873 865 933 865 971 93.6 885 935
OCCNN 918 98.7 749 782 883 727 7156 856 69.1 785
SVDD 98.6 995 825 88.1 949 771 965 937 889 93.1
DeepSVDD | 980 997 917 919 949 835 983 94.6 939 965
CLAD (ours) | 963 979 89.8 872 922 907 925 915 800 92.0

Table 4: One-class AD performance on CIFAR-10 dataset.

Method CIFAR-10

airplane  automobile  bird cat deer dog frog  horse ship truck
OCSVM 65.1 59.0 65.2 501 751 513 71.7 512 676 51.0
OCNN 60.4 62.0 63.7 536 674 56.1 633 601 64.7 60.3
OCCNN 65.0 65.6 62.8 512 727 509 647 522 665 669
SVDD 61.6 63.8 500 559 660 624 747 62.6 749 759
DeepSVDD 61.7 65.9 50.8 59.1 609 657 677 673 759 73.1
CLAD (ours) 73.0 64.4 583 60.1 73.1 639 76.0 60.1 70.7 69.8

parameters of such modules affect the AD performance. Figure [3| shows the performance tendency
when we change the number of the clusters or hidden dimension of feature z.

We vary the number of clusters from 2 to 20 and hidden dimension size from 10 to 100. The red
dashed line indicates the average scores of DeepSVDD in three scenarios. If we set the number of
cluster sizes to more than four, our method surpasses DeepSVDD by a huge margin. This result
implies that the robustness of CLAD to the rough self-labeling. Our framework also shows the
robustness with the change of the hidden dimension size z; only marginal fluctuations are observed.

C IMPLEMENTATION DETAIL

Latent feature extraction. We use autoencoder-based architecture for this network. Both encoder
and decoder have five convolutional layers with increasing channel size followed by two linear lay-
ers. We additionally apply dropout (Srivastava et al., [2014) to avoid overfitting. The model training
is done for 100 epochs using Adam (Kingma & Ba, |2014) with a learning rate of 0.01. Based on the
model analysis, we set the number of clusters as 10 and the size of the hidden dimension as 100.

Self-labeling via clustering. We adopt DEC (Xie et al., 2016)) to self-assign labels to data samples.
In detail, we minimize KL divergence between the embedded data samples from encoder E and the
soft-alignments. When training this module, an SGD optimizer was used with a momentum of 0.9
and a learning rate of 0.01 for 100 epochs.

Classifier for confidence-based AD. We use ResNet-18 (He et al.,[2016) as a classifier F'. We train
this network using Adam (Kingma & Ba, 2014) with a learning rate of 0.0001 for 100 epochs from
scratch. At the inference phase, we adopted the temperature scaling and input perturbation following
ODIN (Liang et al.l 2017).

D SCENARIO SETTING

MNIST. We categorized the class labels into {Curly, Straight, Mixed} by the shape of the
digit. When training, we choose a single scenario as normal and the rest of the others as abnormal.
Note that the case where Mixed as normal is the most challenging since this category has similar
features with other scenarios (e.g. ‘6’ versus ‘8’).
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Figure 3: Ablation study results. The red dash-line denotes the average scores of DeepSVDD on our
three MNIST scenarios. (a) With more than four clusters, our method achieves better performance
compared to DeepSVDD. (b) We vary the hidden dimension sizes from 10 to 100. Our method
shows consistent performance for all the hidden dimension sizes.

GTSRB. This dataset is originally proposed for the traffic sign recognition task. We choose the
scenarios by following the subset as introduced in [Stallkamp et al.| (2012)). With these subsets, we
can simulate the abnormal cases from the driver or self-driving car perspective on various traffic
signs. Table 3] shows the overall scenarios and its containing class labels.

CIFAR-10. We divided the conditions into two simple scenarios as {Thing, Living} to mimic
the real-world anomaly detection that can be used in general object recognition applications.

Tiny-ImageNet. We first categorized class labels with representative subsets as {Animal,
Insect, Instrument, Structure, Vehicle}. Since the class labels of this dataset are
annotated based on the WordNet (Miller, |19935)), we selected the equal number of the classes for each
scenario by referring to the same hierarchy as shown in Table 5] and the representative images for
each scenario are shown in Figure ]
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Dataset | Scenario Class labels
CUR (Curly) 0,3,8
MNIST STR (Straight) 1,4,7
MIX (Mixed) 2,5,6,9
Speed limit (20km/h), Speed limit (30km/h),
SPDL Speed limit (50km/h), Speed limit (60km/h),
(Speed Limit) Speed limit (70km/h), Speed limit (80km/h),
Speed limit (100km/h), Speed limit (120km/h)
INST No passing, No passing for vehicles over 3.5 metric tons,
(Driving Instruction) No vehicles, Vehicles over 3.5 metric tons prohibited
Right-of-way at the next intersection, General caution,
Dangerous curve to the left, Dangerous curve to the right,
WARN Double curve, Bumpy road, Slippery road,
GTSRB (Warning) Road narrows on the right, Road work, Traffic signals,
Pedestrians, Children crossing,
Bicycles crossing, Beware of ice/snow, Wild animals crossing
DIRC Turn right ahead, Turn left ahead, Ahead only,
(Direction) Go 'stralght or right, Go straight or left,
Keep right, Keep left, Roundabout mandatory
SPEC (Special Sign) Priority Road, Yield, Stop, No entry
REGN End of speed limit (80km/h), End of no passing,
(Regulation) End of.all speed gnd passing limits, .
End of no passing by vehicles over 3.5 metrics tons
CIFAR-10 THG (Thing) Airplane, Automobile, Ship, Truck
LIV (Living) Bird, Cat, Deer, Dog, Frog, Horse
ANML Golden retriever, Chihuahua, German shepherd, Labrador retriever,
(Animal) Standard poodle, Yorkshire terrier, Cougar/Puma, Persian cat
ISCT Dragonfly, Roach, Bee, Grasshopper,
(Insect) Fly, Mantis, Monarch butterfly, Sulphur butterfly
Tiny- ISTM Water jug, Beer bottle, Tea pot, Pop bottle/Soda bottle,
ImageNet (Instrument) Beaker, Rugby ball, Volley ball, Pill bottle
STRT Triumphal arch, Suspension bridge, Fountain, Viaduct,
(Structure) Bannister, Steel arch bridge, Obelisk, Beacon
VHCL School bus, Trolly bus, Sports car, bullet train,
(Vehicle) Convertible, Tractor, Police van, beach wagon

Table 5: Descriptions of sub-class scenario selection for each dataset.
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Figure 4: Representative images of the super-categories of each benchmark datasets: (a-c) MNIST.
(d-i) GTSRB. (j-k) CIFAR-10. (I-p) Tiny-ImageNet.
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