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ABSTRACT

Shift invariance is a critical property of CNNs that improves performance on
classification. However, we show that invariance to circular shifts can also lead to
greater sensitivity to adversarial attacks. We first characterize the margin between
classes when a shift-invariant linear classifier is used. We show that the margin
can only depend on the DC component of the signals. Then, using results about
infinitely wide networks, we show that in some simple cases, fully connected and
shift-invariant neural networks produce linear decision boundaries. Using this, we
prove that shift invariance in neural networks produces adversarial examples for the
simple case of two classes, each consisting of a single image with a black or white
dot on a gray background. This is more than a curiosity; we show empirically that
with real datasets and realistic architectures, shift invariance reduces adversarial
robustness. Finally, we describe initial experiments using synthetic data to probe
the source of this connection.

1 INTRODUCTION

In adversarial attacks (Szegedy et al., 2013) against classifiers, an adversary with knowledge of the
trained classifier makes small perturbations to a test image (or even to objects in the world (Eykholt
et al., 2018; Wu et al., 2020b)) that change the output. Vulnerability to such attacks threatens the
deployment of deep learning systems in many critical applications, from spam filtering to self-driving
cars. Despite a great deal of study, it remains unclear why neural networks are so susceptible to
adversarial attacks. We show that invariance to circular shifts in Convolutional Neural Networks
(CNNs) can be one cause of this lack of robustness. All reference to shifts will refer to circular shifts.

To motivate this conclusion we study in detail a simple example. Indeed, one of our contributions is to
present perhaps the simplest possible example in which adversarial attacks can occur. Figure 1 shows
a two class classification problem in which each class consists of a single image, a white or black dot
on a gray background. We train either a fully connected (FC) network or a fully shift-invariant CNN
to distinguish between them. Since each class contains only a single image, we measure adversarial
robustness as the l2 distance to an adversarial example produced by a DDN attack (Rony et al., 2019),
using the training images as the starting point. The figure shows that the CNN is much less robust
than the FC network, and that the robustness of the CNN drops precipitously with the image size.

In Sections 2 and 3 we explain this result theoretically. In Section 2 we study the effect of shift
invariance on the margin of linear classifiers, for linearly separable data. Next, in Section 3, we draw
on recent work that characterizes infinitely wide neural networks as kernel methods and prove that
under certain assumptions, a shift invariant CNN produces a linear decision boundary for the example
in Figure 1, explaining its lack of adversarial robustness. It is valuable to produce such a simple
example in which a lack of adversarial robustness provably occurs, and can be fully understood. Still,
it is reasonable to question whether shift invariance can affect robustness in real networks trained on
real data. In Section 4 we show experimentally that it can.

∗Equal contribution
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Figure 1: In a binary classification problem as shown in (a), with each image as a distinct class, a
FC network requires an average L2 distance close to 1 to construct an adversarial example while
a shift-invariant CNN only requires approximately 1√

d
as illustrated in (c), where d is the input

dimension. The curve labeled CNN shows results for a real trained network, while CNTK shows the
theoretically derived prediction of 1√

d
for an infinitely wide network. We visualized the adversarial

examples for d = 225 of both models in (b). Note that the change is imperceptible for the CNN.

The main contribution of our paper is to show theoretically that shift invariance can under-
mine adversarial robustness, and to show experimentally that this is indeed the case on real-
world networks.

2 SHIFT INVARIANCE AND THE LINEAR MARGIN

In this section we consider what happens when a linear classifier is required to be shift invariant. That
is, we suppose that any circularly shifted version of a training example should be labeled the same as
the original sample. For convenience of notation we consider classes of 1D signals of length d, in
which x = (x1, x2, ...xd). Our results are easily extended to signals of any dimension. We denote the
set of training samples with label +1 byX1, and the set of samples with label−1 byX2. Let xs denote
the signal x shifted by s, with 0 ≤ s ≤ d−1. That is: xs = (xs+1, xs+2, ...xd, x1, ...xs). For a signal
x, let SH(x) denote the set containing every shifted version of x. That is xs ∈ SH(x), ∀s, 0 ≤
s ≤ d − 1. Let Si = ∪x∈Xi

SH(x) denote the set of all shifted versions of all signals in the set
Xi. Further, let fdc(x) denote the DC component of a signal. That is, fdc(x) = 1√

d

∑d
i=1 xi. We

denote w̄ = 1√
d
1d. where 1d is a d-dimensional vector of all ones, so fdc(x) = w̄Tx. We show the

theorem:

Theorem 1. Let S1 and S2 denote the sets of all shifts of X1 and X2, as described above. They are
linearly separable if and only if maxx1∈S1

fdc(x1) < minx2∈S2
fdc(x2) or maxx2∈S2

fdc(x2) <
minx1∈S1

fdc(x1). Furthermore, if the two classes are linearly separable then, if the first inequality
holds, the margin is minx2∈S2

fdc(x2)−maxx1∈S1
fdc(x1), and similarly if the second inequality

holds. Furthermore, the max margin separating hyperplane has a normal of w̄.

The proof of the above theorem appears in Section B. Based on this theorem, we now consider the
example shown in Figure 1. Let x1 denote an image consisting of a single 1 in a background of 0s,
and let x2 denote an image containing a single -1 with 0s. Since fdc(x1) = 1√

d
and fdc(x2) = − 1√

d
,

if we let X1 = {x1} and X2 = {x2} it is straightforward to show:

Corollary 1. X1 and X2 defined above are linearly separable with a max margin of 2. SH(X1)
and SH(X2) are linearly separable with a max margin of 2√

d
and a separating hyperplane with the

normal vector w̄.

3 SHIFT INVARIANCE AND ADVERSARIAL ATTACKS FOR NEURAL NETWORKS:
NTK VS. CNTK

To understand the robustness of shift invariant neural networks we examine the behavior of the neural
tangent kernel (NTK) for two networks with simple inputs. It has been shown that neural networks
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(a) MNIST (b) Fashion-MNIST

Figure 2: Robustness of Shift Invariant CNNs vs FC networks.

with infinite width (or convolutional networks with infinite number of channels) behave like kernel
regression with the family of kernels called NTKs (Jacot et al., 2018). Here we consider the NTK
for a two-layer, bias-free fully connected network, denoted FC-NTK, and for a two-layer bias-free
convolutional network with global average pooling, denoted CNTK-GAP (Li et al., 2019).

In our theorem below we use both FC-NTK and CNTK-GAP to construct two-class classifiers with
a training set composed of two antipodal training points, x,−x ∈ Rd. In both cases the kernels
produce linear separators, but while FC-NTK produces a separator with constant margin, independent
of input dimension, due to shift invariance CNTK-GAP results in a margin that decreases with 2/

√
d,

consistent with our results in Figure 1. Due to space considerations, the definition of NTK, CNTK
and their corresponding network architectures, the minimum norm interpolant gk(z) of the kernel
regression with kernel k, along with the proof of the theorem below are deferred to Section C.

Theorem 2. Let x,−x ∈ Rd be two training vectors with class labels 1,−1 respectively.

1. Let k(z,x) denote NTK for the bias-free, two-layer fully connected network. Then ∀z ∈ Rd,
the minimum norm interpolant gk(z) ≥ 0 iff zTx ≥ 0.

2. Let K(z,x) denote CNTK-GAP for the bias-free, two-layer convolutional network defined
in (14), and assume HK is invertible. Then ∀z ∈ Rd, either gK(z) ≥ 0 iff zT1d ≥ 0 or
gK(z) ≥ 0 iff zT1d ≤ 0. (I.e., zT1d = 0 forms a separating hyperplane.)

The theorem tells us that NTK and CNTK produce linear classifiers. (1) tells us that NTK produces a
separating hyperplane with a normal vector x, while (2) says that for CNTK the normal direction is
1d. The following corollary follows directly from Thm 1, which explains the results in Figure 1.

Corollary 2. With a training set composed of an antipodal pair the margin obtained with CNTK is
the difference between their DC components.

4 EXPERIMENTS

We have shown theoretically that shift invariance can reduce adversarial robustness. In this section we
describe experiments that indicate that this does occur with real datasets and network architectures.

To start with, we compare the adversarial robustness of a fully shift-invariant convolutional neural
network (CNN) with a fully connected (FC) network. We consider two datasets in which FC networks
are able to attain reasonable performance compared to CNNs, MNIST (LeCun et al., 2010) and
Fashion-MNIST (Xiao et al., 2017). We use various shift invariant CNN and FC networks for our
experiments. The notation FC-X-Y denotes an FC network with X hidden layers and Y units in
each hidden layer. Conv-X-Y denotes a network with a single convolutional layer with X kernel size
and Y filters with stride 1 and circular padding. All networks use ReLU activation. CNNs have a
penultimate layer that performs Global Average Pooling, so these networks are fully shift invariant.
Finally, a fully connected layer is applied at the end of all the CNNs, which outputs the final logits.
We report results for clean1 and robust test accuracy for l2 and l∞ attacks at different ε values in
Figure 2a and 2b for MNIST and Fashion-MNIST respectively. We observe that although the clean
accuracy for the models is similar on the datasets, FC networks are more robust than Shift
Invariant CNNs, especially for large ε values.

1Clean Accuracy of models is shown by ε = 0.
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(a) Cifar10 (b) ImageNet

Figure 3: Robustness of models on Cifar-10 and ImageNet datasets. "BN" indicates that the model
uses batch normalization.

Next, we consider the robustness of realistic networks on large scale datasets. We do not have a firm
theoretical basis for comparing the shift-invariance of these networks, since none are truly (non-)
shift invariant as we will discuss in Section D.2. We start by comparing ResNets with previously
introduced FC networks on SVHN (Netzer et al., 2011), where ResNets generate descent clean
accuracy while FC networks do not. However, we find that ResNets practically lead to lower accuracy
under adversarial attack than FC networks, especially when ε is large. More details are discussed in
Section D.1.

On more challenging datasets such as Cifar10 and ImageNet, FC networks cannot produce comparable
clean accuracy, which makes them no longer appropriate representatives of non-shift invariant
classifiers for robustness comparison. (Zhang, 2019) introduces an empirical consistency measure
of relative shift invariance, i.e. the percentage of the time that the model classifies two different
shifts of the same image to be the same class, which we use to distinguish among models. Although
it is not clear that this fully captures our notion of shift invariance, it does support the view that
AlexNet is by far the least shift-invariant large-scale CNN due to violation to most of the assumptions
needed for shift invariant classifier. Specifically, on ImageNet dataset, the consistency of all the
models except for AlexNet are over 85, while the consistency of AlexNet is only 78.11 (Zhang,
2019). We apply l2 and l∞ PGD attacks to the pretrained models provided in the Pytorch model
zoo on ImageNet. The accuracy of a few representative models under different attack strengths are
shown in Figure 3a. It clearly illustrates that AlexNet is indeed an outlier in terms of both shift
invariance and robustness.

To further demonstrate this, we repeat the experiments on Cifar10 with realistic architectures and
report test accuracy under different attacks in Figure 3b. We also evaluate the consistency of the
models to shifts and find that all the ResNet models have consistency larger than 75 while the
consistency of AlexNet is only 34.79. In addition, as shown in Figure 3b, the clean accuracy of
AlexNet is lower than the ResNets while it decreases much slower as the attack strength increases,
showing that the less shift invariant classifier, AlexNet, achieves better robustness.

We refer the readers to Section D.1 for all the training details for different experiments mentioned
above and results on the SVHN dataset. In Section A, we summarize previous studies on the cause of
adversarial examples, shift invariance and NTK. In addition to the experiments that serve as empirical
evidence that shift invariance can reduce adversarial robustness, we also provide experiments on
simple, synthetic datasets in Section D.3 to begin to address the question of why this might occur.

5 CONCLUSION

We have shown theoretically and experimentally that shift invariance can reduce adversarial robustness
in neural networks. We prove that for linear classifiers, shift invariance reduces the margin between
classes to just the difference in their DC components. Using this, we construct a simple, intuitive
example in which shift invariance dramatically reduces robustness. Our experiments provide evidence
that this reduction in robustness shows up in real networks as well. Finally, our experiments on
synthetic data provide a step towards understanding the relationship between robustness, shift
invariance, dimensionality and the linear margin of the data, in neural networks.
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A RELATED WORK

In this section we survey prior work on the origin of adversarial examples and briefly discuss work
on shift-invariance in CNNs, and on the NTKs.

One common explanation for adversarial examples lies in the curse of dimensionality. (Goodfellow
et al., 2015) argues that even with a linear classifier a lack of adversarial robustness can be explained
by high input dimension. (Simon-Gabriel et al., 2019) expands on this by studying how gradient
magnitude grows with dimension. (Gilmer et al., 2018), (Shafahi et al., 2019), (Daniely & Schacham,
2020) and (Khoury & Hadfield-Menell, 2019) provide additional insight into the role of dimension
in adversarial examples, while (Shamir et al., 2019) shows that for ReLU networks, adversarial
examples arise as a consequence of the geometry of Rn.

Some studies show that adversarial examples could arise due to properties of the data, such as high
frequency components (Wang et al., 2020) or biases in the features (Tsipras et al., 2018). (Schmidt
et al., 2018) shows that in some cases robustness requires larger sample complexity, while (Chen
et al., 2020) shows that in some cases more data can undermine robustness.

Other work suggests that susceptibility to adversarial attack may be due to aspects of the model, such
as insufficient complexity (Nakkiran, 2019), width (Madry et al., 2018; Wu et al., 2020a) or batch
normalization(Galloway et al., 2019). (Shah et al., 2020) shows that in many cases networks learn
simple decision boundaries with small margins, rather than more complex ones with large margins,
inducing adversarial vulnerability.

Perhaps most relevant to our work, (Kamath et al., 2020) examine the interplay between rotation
invariance and robustness. They empirically show that when they induce more rotational invariance
using data augmentation in CNNs and Group-equivariant CNNs (Cohen & Welling, 2016) adversarial
robustness decreases. A quite different notion of invariance is explored in (Jacobsen et al., 2018).
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Several papers have pointed out that the modern CNN architectures are not fully shift invariant for
reasons such as padding mode, striding, and padding size (e.g. (Alsallakh et al., 2020)). (Azulay &
Weiss, 2019) relates a lack of shift invariance to a failure to respect the sampling theorem. Several
papers have suggested methods for enhancing shift invariance, including (Zhang, 2019), (Kayhan &
Gemert, 2020), and (Chaman & Dokmanić, 2020)

Some of our theoretical results draw on recent work on the NTK (Jacot et al., 2018) and CNTKs (Arora
et al., 2019; Li et al., 2019). These and other recent studies have shown that when networks are
over-parameterized, their parameters stay close to their initialization during training, allowing a
linearization of the network that makes the analysis of convergence and generalization tractable (Allen-
Zhu et al., 2019a;b; Du et al., 2018; 2019). When optimizing the quadratic loss using gradient descent,
the dynamics of an infinitely wide neural network can be described by kernel regression. We describe
these kernels in more detail in Section 3.

B PROOF OF THEOREM 1

In this section, we prove Theorem 1 on the shift invariance and linear margin. We call a linear
classifier shift invariant when it places all possible shifts of a signal in the same class. We prove that
for a shift invariant linear classifier the margin will depend only on differences in the DC components
of the training signals. It follows that for the two classes shown in Figure 1, the margin of a linear,
shift invariant classifier will shrink in proportion to 1√

d
, where d is the number of image pixels.

Theorem 1. Let S1 and S2 denote the sets of all shifts of X1 and X2, as described above. They are
linearly separable if and only if maxx1∈S1

fdc(x1) < minx2∈S2
fdc(x2) or maxx2∈S2

fdc(x2) <
minx1∈S1

fdc(x1). Furthermore, if the two classes are linearly separable then, if the first inequality
holds, the margin is minx2∈S2 fdc(x2)−maxx1∈S1 fdc(x1), and similarly if the second inequality
holds. Furthermore, the max margin separating hyperplane has a normal of w̄.

Proof. We only consider the case in which maxx1∈S1 fdc(x1) < minx2∈S2 fdc(x2), without loss
of generality. Two classes are linearly separable iff there exists a d-dimensional unit vector w and
a threshold T such that: ∀x1 ∈ S1,w

Tx1 ≤ T and ∀x2 ∈ S2,w
Tx2 ≥ T , and say the margin is:

minx1∈S1,x2∈S2
wTx2 −wTx1.

First, it is obvious that if maxx1∈S1
fdc(x1) < minx2∈S2

fdc(x2) then S1 and S2 are linearly
separable, by letting w = w̄, and

T = max
x1∈S1

fdc(x1) +
minx2∈S2

fdc(x2)−maxx1∈S1
fdc(x1)

2

The margin for w̄ is minx2∈S2 fdc(x2)−maxx1∈S1 fdc(x1).

Second, we consider the opposite direction, supposing that the two classes are linearly separable.
In this case there exist some w and T that will separate the classes. Let x1 ∈ X1. Then we have
WLOG: ∀s wTxs

1 < T . This gives:∑d−1
s=0 w

Txs
1

d
< T =⇒

wT
∑d−1

s=0 x
s
1

d
< T

Note that ∀x ∈ Rd,
∑d−1

s=0 x
s is just a constant vector of length d with each term equal to

√
dfdc(x).

Therefore: ∑d−1
s=0 w

Txs

d
= fdc(w)fdc(x) (1)

so
fdc(w)fdc(x1) < T ∀x1 ∈ X1

By similar reasoning, we have:

fdc(w)fdc(x2) > T ∀x2 ∈ X2

Because fdc(x1) < fdc(x2) we have fdc(w) > 0. So:

max
x1∈X1

fdc(x1) <
T

fdc(w)
and min

x2∈X2

fdc(x2) >
T

fdc(w)
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so
max
x1∈X1

fdc(x1) < min
x2∈X2

fdc(x2) (2)

This shows that S1 and S2 are linearly separable if and only if their DC components are separable.

We now show that if S1 and S2 are linearly separable, for the max margin separator we have
w = w̄, with a margin of minx1∈S2 fdc(x2) − maxx1∈S1 fdc(x1). Because w̄Tx = fdc(x), and
the DC components are separable, w̄ separates the data, and we can see that the margin will be
minx∈S2

xdc −maxx∈S1
xdc.

So, it remains to show that no other choice of w separates the data with a larger margin. Assume,
WLOG that ‖w‖ = 1 and that the margin is:

min
x2∈S2

wTx2 − max
x1∈S1

wTx1

which, as above, implies fdc(w) > 0. We will show that ∀x1 ∈ X1,x2 ∈ X2 and ∀w such that
‖w‖ = 1:

min
s

wTxs
2 −max

s
wTxs

1 ≤ min
s

w̄Txs
2 −max

s
w̄Txs

1 (3)

which implies that the margin from w̄ is greater than or equal to the margin from w. We note that
mins w̄

Txs
2 −maxs w̄

Txs
1 = fdc(x2)− fdc(x1).

From Equation 1 we know that

max
s

wTxs ≥ fdc(w)fdc(x), min
s

wTxs ≤ fdc(w)fdc(x)

This implies that:
mins w

Tx2 −maxs w
Tx1

fdc(w)
≤ fdc(x2)− fdc(x1)

Given the constraint that ‖w‖ = 1, fdc(w) is minimized by w̄, and so fdc(w) ≥ 1, and Eq. 3 is
shown to hold.

C PROOF OF THEOREM 2 AND LEMMA 1

In this section, we first define the FC networks with the neural tangent kernel (NTK) (Jacot et al.,
2018) and CNNs with a convolutional neural tangent kernel (CNTK) (Arora et al., 2019; Li et al.,
2019) which we will use in the proof. Then we give the proofs of Theorem 2 and Lemma 1.

Let x ∈ Rd denote the input to the network. A two-layer fully connected network is defined by

fFC(x;W,v) = vTσ(Wx), (4)

where W ∈ Rm×d and v ∈ Rm are learnable parameters and σ(.) is the ReLU function applied
elementwise. Assuming W and v are initialized with normal distribution, the corresponding FC-NTK
for inputs z,x ∈ Rd is given by (Bietti & Mairal, 2019)

k(z,x) =
1

π

(
2zTx(π − φ) + ‖z‖‖x‖ sinφ

)
, (5)

where φ denotes the angle between z and x, i.e., φ = arccos
(

zTx
‖z‖‖x‖

)
.

Next we define the shift invariant convolutional model. Given an input x ∈ Rd and filters {wi}mi=1 ⊂
Rq we denote by wi ∗ x ∈ Rd the circular convolution of x with the filter wi (with no bias). W ∗ x
denotes the results of these convolutions, represented as an m× d matrix, with the m× q matrix W
denoting the collection of all filters {wi}mi=1. Finally, let v ∈ Rm. Then a two layer convolutional
network with global average pooling is defined by

fConv(x;W,v) =
1

d
vTσ(W ∗ x))1d, (6)

9
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W and v include the learnable parameters initialized with the standard normal distribution and
1d ∈ Rd is the vector of all ones. In this model the input x is convolved with the rows of W . After
ReLU the result undergoes a 1×1 convolution with parameters v followed by global average pooling,
captured by the multiplication with 1

d1d.

Given inputs z,x ∈ Rd, denote by z̄i, x̄j ∈ Rq their (cyclic) patches, 1 ≤ i, j ≤ d, so for
example z̄i = (zi, z(i+1) mod d, ...z(i+q−1) mod d)T . Then the corresponding CNTK-GAP K(z,x)
is constructed as follows.

K(z,x) =
1

d2

d∑
i=1

d∑
j=1

k(z̄i, x̄j), (7)

where k(z̄i, x̄j) is the FC-NTK given by (12) (see a related construction in (Tachella et al., 2020)).

We use FC-NTK and CNTK-GAP in kernel regression. Given training data {(xi, yi)}ni=1, xi ∈ X ,
yi ∈ R, kernel ridge regression is the solution to (Saitoh & Sawano, 2016)

gk = arg min
g∈Hk

n∑
i=1

(g(xi)− yi)2 + λ‖g‖2Hk
, (8)

where Hk denotes the reproducing kernel Hilbert space associated with k. The solution of (15) is
given by

gk(z) = (k(z,x1), ..., k(z,xn))(Hk + λI)−1y, (9)

where Hk is the n × n matrix with its i, j’th entry k(xi,xj), I denotes the identity matrix, and
y = (y1, ..., yn)T . Below we consider the minimum norm interpolant, i.e.,

gk = arg min
g∈Hk

‖g‖Hk
s.t. ∀i, g(xi) = yi. (10)

which is obtained when we let λ→ 0.

Let x ∈ Rd denote the input to the network. A two-layer fully connected network is defined by

fFC(x;W,v) = vTσ(Wx), (11)

where W ∈ Rm×d and v ∈ Rm are learnable parameters and σ(.) is the ReLU function applied
elementwise. Assuming W and v are initialized with normal distribution, the corresponding FC-NTK
for inputs z,x ∈ Rd is given by (Bietti & Mairal, 2019)

k(z,x) =
1

π

(
2zTx(π − φ) + ‖z‖‖x‖ sinφ

)
, (12)

where φ denotes the angle between z and x, i.e., φ = arccos
(

zTx
‖z‖‖x‖

)
.

Next we define the shift invariant convolutional model. Given an input x ∈ Rd and filters {wi}mi=1 ⊂
Rq we denote by wi ∗ x ∈ Rd the circular convolution of x with the filter wi (with no bias). W ∗ x
denotes the results of these convolutions, represented as an m× d matrix, with the m× q matrix W
denoting the collection of all filters {wi}mi=1. Finally, let v ∈ Rm. Then a two layer convolutional
network with global average pooling is defined by

fConv(x;W,v) =
1

d
vTσ(W ∗ x))1d, (13)

W and v include the learnable parameters initialized with the standard normal distribution and
1d ∈ Rd is the vector of all ones. In this model the input x is convolved with the rows of W . After
ReLU the result undergoes a 1×1 convolution with parameters v followed by global average pooling,
captured by the multiplication with 1

d1d.

Given inputs z,x ∈ Rd, denote by z̄i, x̄j ∈ Rq their (cyclic) patches, 1 ≤ i, j ≤ d, so for
example z̄i = (zi, z(i+1) mod d, ...z(i+q−1) mod d)T . Then the corresponding CNTK-GAP K(z,x)
is constructed as follows.

K(z,x) =
1

d2

d∑
i=1

d∑
j=1

k(z̄i, x̄j), (14)

10
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where k(z̄i, x̄j) is the FC-NTK given by (12) (see a related construction in (Tachella et al., 2020)).

We use FC-NTK and CNTK-GAP in kernel regression. Given training data {(xi, yi)}ni=1, xi ∈ X ,
yi ∈ R, kernel ridge regression is the solution to (Saitoh & Sawano, 2016)

gk = arg min
g∈Hk

n∑
i=1

(g(xi)− yi)2 + λ‖g‖2Hk
, (15)

where Hk denotes the reproducing kernel Hilbert space associated with k. The solution of (15) is
given by

gk(z) = (k(z,x1), ..., k(z,xn))(Hk + λI)−1y, (16)
where Hk is the n × n matrix with its i, j’th entry k(xi,xj), I denotes the identity matrix, and
y = (y1, ..., yn)T . Below we consider the minimum norm interpolant, i.e.,

gk = arg min
g∈Hk

‖g‖Hk
s.t. ∀i, g(xi) = yi. (17)

which is obtained when we let λ→ 0.
Theorem 2. Let x,−x ∈ Rd be two training vectors with class labels 1,−1 respectively.

1. Let k(z,x) denote NTK for the bias-free, two-layer fully connected network. Then ∀z ∈ Rd,
the minimum norm interpolant gk(z) ≥ 0 iff zTx ≥ 0.

2. Let K(z,x) denote CNTK-GAP for the bias-free, two-layer convolutional network, and
assume HK is invertible. Then ∀z ∈ Rd, either gK(z) ≥ 0 iff zT1d ≥ 0 or gK(z) ≥ 0 iff
zT1d ≤ 0. (I.e., zT1d = 0 forms a separating hyperplane.)

The theorem tells us that NTK and CNTK produce linear classifiers. (1) tells us that NTK produces a
separating hyperplane with a normal vector x, while (2) says that for CNTK the normal direction is
1d.

Proof. 1. Solving the regression problem (16) with λ→ 0 we have

Hk =

(
k(x,x) k(x,−x)
k(−x,x) k(−x,−x)

)
= 2xTxI,

where the latter equality is obtained from (12) by noting that φ = 0 along the diagonal and
φ = π for the off-diagonal entries. Therefore, using (16) and noting that y = (1,−1)T ,

gk(z) =
1

2xTx
(k(z,x)− k(z,−x))

Given a test point z ∈ Rd, let φ now denote the angle between z and x and note that the
angle between z and −x is π − φ. Therefore,

k(z,x) =
1

π

(
2zTx(π − φ) + ‖z‖‖x‖ sinφ

)
k(z,−x) =

1

π

(
−2zTxφ+ ‖z‖‖x‖ sinφ

)
,

implying that
k(z,x)− k(z,−x) = 2zTx. (18)

from which we obtain gk(z) = zTx
xTx

. Consequently, gk(z) > 0 if and only if zTx > 0.

2. Using the definition of K (Eq. 14) it is clear that K(x,x) = K(−x,−x). Therefore, using
Lemma 1 we need to show that K(z,x) > K(z,−x) on one side of the plane zT1d = 0.
Consider the patches z̄i in z and x̄j in x. From (18) we have

k(z̄i, x̄j)− k(z̄i,−x̄j) = 2z̄Ti x̄j ,

implying that

K(z,x)−K(z,−x) =
2

d2

d∑
i=1

d∑
j=1

z̄Ti x̄j .

11
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Rewriting this in matrix notation we have

K(z,x)−K(z,−x) =
2

d2
1T
d Z

TX1d,

where Z and X are q × d matrices whose columns respectively contain all the patches of
z and x. Since all rows of Z and X are identical up to a cyclic permutation ẑ = Z1d and
x̂ = X1d are vectors of constants in Rq with the constants zT1d and xT1d respectively.
Consequently, using Lemma 1

gK(z) = c(K(z,x)−K(z,−x)) =
2cq

d2
(zT1d)(xT1d).

where, becauseK is positive definite andHK is invertible, c = 1/(K(x,x)−K(x,−x)) >
0. Denoting β = 2cq

d2 (xT1d), we obtain that gK(z) > 0 if and only if sign(β) zT1d > 0,
proving the theorem.

The following lemma was used to prove Thm. 2.

Lemma 1. Let k(., .) be a positive definite kernel with a training set {(x1,+1), (x2,−1)} ⊂ Rd×R.
If k(x1,x1) = k(x2,x2) and Hk is invertible with λ → 0 then a test point z ∈ Rd is classified as
+1 if and only k(z,x1) > k(z,x2).

Proof. Denote by a = k(x1,x1) = k(x2,x2) and b = k(x1,x2), then Hk =

(
a b
b a

)
. Clearly,

y = (1,−1)T is an eigenvector of Hk with the eigenvalue a − b > 0, which is positive due to
the positive definiteness of k. Consequently, y is also an eigenvector of H−1k with eigenvalue
1/(a− b) > 0. Applying (16) we have

gk(z) = (k(z,x1), k(z,x2))H−1y

=
1

a− b
(k(z,x1)− k(z,x2))

Therefore, gk(z) > 0 if and only if k(z,x1) > k(z,x2).

D MORE EXPERIMENTS

In this section, we discuss the details in training different models. We then address the question
whether the realistic networks such as AlexNet and ResNets are shift invariant. Finally we discuss
the relationship between the margin and margin, in order to probe the empirical observation we had
on the shift invariance and adversarial robustness.

D.1 EXPERIMENT DETAILS

All the models on MNIST and FashionMNIST were trained for 20 epochs using the ADAM optimizer,
with a batch size of 200 and learning rate of 0.01. The learning rate is decreased by a factor of 10 at
the 10th and 15th epoch. To evaluate the robustness of these models, we use PGD l2 and l∞ attacks
(Madry et al., 2018) with different ε values, a single random restart, 10 iterations and step-size of ε/5.

On SVHN dataset, the models were trained for 100 epochs using SGD with 0.9 momentum and
batch-size of 128. A learning rate of 0.1, with decay of factor 10 at the 50th and 75th epochs was
used. We use the same PGD attacker as described above. The results for clean and robust accuracy
with different ε values for l2 and l∞ are given in Figure 4.

On Cifar10, we train AlexNet and 5 variants of ResNet for 200 epochs using SGD with a cosine
annealing schedule (Loshchilov & Hutter, 2016). We use a momentum equal to 0.9 for SGD and
weight decay of 5e− 4.

12
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Figure 4: Robustness of ResNets vs FC networks on SVHN dataset.
D.2 REALISTIC ARCHITECTURES AND SHIFT INVARIANCE

Before describing experiments with real-world architectures, we discuss their shift invariance. With
certain assumption on the padding, (Cohen & Welling, 2016) proves that the convolution operation is
equivariant to shifts. The convolution operation together with global pooling leads to shift invariance.
Also, it is easy to derive from (Cohen & Welling, 2016) results for models that use stride and local
pooling, which we summarize in the note below.
Note 1. A Convolutional Neural Network that meets the following assumptions has some shift
invariance:

1. It consists of N fully convolutional or local pooling layers and 1 global pooling layer
followed by any fully connected layers.

2. Circular padding is used in a "same" mode in the convolutional and pooling layers.

Such a CNN with the strides p1, p2, · · · , pN in the convolutional or pooling layers are invariant to a
shift of P pixels, where P is any integer multiple of

∏N
i=1 pi.

(Kayhan & Gemert, 2020) discusses padding modes. Architectures applied to real problems are
generally not born shift invariant (Zhang, 2019; Kayhan & Gemert, 2020) due to the violations of
these assumptions. The most common case is the use of zero padding. (Zhang, 2019) has shown
that realistic architectures with zero paddings still preserve approximate invariance to shifts after
training. Another common cause of a more severe lack of shift invariance is the use of a fully
connected layer as a substitute for the global pooling layer. This is widely seen in the earlier network
architectures such as LeNet (LeCun et al., 1989) and AlexNet (Krizhevsky, 2014) while more recent
ones have universally adopted a global pooling layer (e.g. ResNet (He et al., 2016), DenseNet (Huang
et al., 2017)) to reduce the number of parameters. Specifically, (Zhang, 2019) shows that in practice
AlexNet is much less shift invariant than the other architectures. For this reason, we pay extra
attention to the comparison of robustness between AlexNet and other architectures in the following
sections when FC networks do not achieve decent accuracy.

Table 1: Average l2 distance for adversarial examples over all samples for dataset 1 and 2. For
orthogonal vectors, FC networks are more robust than CNNs. For orthogonal frequencies, CNNs are
more robust than FC networks.

Orth. Vectors Orth. Frequencies

n FC CNN FC CNN
50 0.113 0.033 0.129 0.272

100 0.083 0.029 0.126 0.251
200 0.060 0.024 0.103 0.326

D.3 DIMENSION AND MARGIN

Training a shift invariant network is similar to training a FC network using all shifted versions of the
training set. This raises the question of why such data augmentation with shifted training examples
affects adversarial robustness? Note that it has been argued that in a different context, more training
data should lead to greater robustness (Schmidt et al., 2018). We examine this question with some
inital experiments.
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In prior work it has been suggested that larger input dimension of the data (Goodfellow et al., 2015;
Gilmer et al., 2018) or larger intrinsic dimension of the data (Khoury & Hadfield-Menell, 2019)
can reduce robustness. One way that shift invariance might reduce robustness is by increasing the
intrinsic dimension of the training data.

To examine this question we create two synthetic datasets, one in which shift invariance increases the
implicit dimension of the data, and one in which it does not. In both datasets, each class contains n,
orthogonal vectors, with varying n and dimension d = 2000. In the first set, the vectors are randomly
chosen from a uniform distribution. The vectors in each class have dimension n, but all shifted
versions of them have dimension d for any n. In the second dataset, training examples are sampled
by frequencies sin 2πkx and cos 2πkx, where k ∈ [1, n]. The first class consists of frequencies in
which k is odd, and the second class consists of frequencies with even k. In this case, the vectors in a
class have dimension n, and all shifts of the vectors have dimension n.

If increasing the intrinsic dimension of the data reduces robustness, we would expect that for the FC
network, increasing n would reduce robustness for both datasets. However, we would expect that for
the shift invariant network, we see much lower robustness for dataset 1 than for dataset 2, especially
for small n, which we do observe as shown in Table 1.

Table 2: Average l2 distance for all samples on FC network for dataset 3. The average l2 distance
increases with and increase in p.

p

n 0 0.02 0.05 0.1 0.2 0.3
50 0.106 0.108 0.096 0.114 0.152 0.181
100 0.080 0.081 0.080 0.094 0.121 0.181
200 0.060 0.061 0.061 0.079 0.112 0.170

In our theoretical results, and the example in Figure 1, we see that considering all shifts of the data
may not only increase its dimension but also reduce the linear margin. To tease these effects apart, we
create a third data set in which as its size increases, its dimension increases but its margin does not.

In this third data set, all samples in one class have a common component in a random direction,
and a second component in a random direction that is orthogonal to all other vectors. That is, let
c1, c2, r

1
i , r

2
i , 1 ≤ i ≤ n be a set of randomly chosen, orthogonal unit vectors. Then the i’th vector

in class j is given by xj
i = pcj + rji , where p is a constant that we vary. The margin between the

classes will be at least
√

2p. Since we are not controlling the margin for all shifts of this data, we
classify this data only using an FC network. As shown in Table 2, we observe that as p increases,
robustness increases. Also for large p, robustness is similar across different n values suggesting that
the linear margin predicts robustness better than the dimension of the data.

The experiments in this subsection are meant to highlight some interesting questions about the
connection between shift invariance and robustness. Does shift-invariance reduce robustness by
increasing the implicit dimension of the data? And if so, is this because it leads to data that implicitly
has a smaller margin? Our tentative answer to these questions is yes, based on experiments with
simple datasets. But these are questions that surely deserve greater attention.
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