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ABSTRACT

Evaluating the robustness of a defense model is a challenging task in adversarial
robustness research. In this paper, we identify a more subtle situation called
Imbalanced Gradients that can also cause overestimated adversarial robustness.
The phenomenon of imbalanced gradients occurs when the gradient of one term of
the margin loss dominates and pushes the attack towards a suboptimal direction.
To exploit imbalanced gradients, we formulate a Margin Decomposition (MD)
attack that decomposes a margin loss into individual terms and then explores the
attackability of these terms separately via a two-stage process. We examine 12
state-of-the-art defense models, and find that models exploiting label smoothing
easily cause imbalanced gradients, and on which our MD attacks can decrease
their PGD robustness (evaluated by PGD attack) by over 23%. For 6 out of the
12 defenses, our attack can reduce their PGD robustness by at least 9%. The
results suggest that imbalanced gradients need to be carefully addressed for more
reliable adversarial robustness. Our code is available at https://github.
com/Jack-lx-jiang/MD_attacks.

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial examples, which are input instances
crafted by adding small adversarial perturbations to natural examples. (Szegedy et al., 2014; Goodfel-
low et al., 2015). A number of defenses have been proposed to overcome this vulnerability. However,
a concerning fact is that many defenses have been quickly shown to have undergone incorrect or
incomplete evaluation (Carlini and Wagner, 2017; Athalye et al., 2018; Engstrom et al., 2018; Uesato
et al., 2018; Mosbach et al., 2018; He et al., 2018). In this work, we identify a new situation called
Imbalanced Gradients that exists in several state-of-the-art defense models and can cause highly
overestimated robustness.

Imbalanced gradients is a new type of gradient masking effect where the gradient of one loss term
dominates that of other terms. This causes the attack to move toward a suboptimal direction. Different
from obfuscated gradients, imbalanced gradients are more subtle and are not detectable by the
detection methods used for obfuscated gradients. To exploit imbalanced gradients, we propose a
novel attack named Margin Decomposition (MD) attack that decomposes the margin loss into two
separate terms, and then exploits the attackability of these terms via a two-stage attacking process.
We derive MD variants of traditional attacks like PGD and MultiTargeted (MT) (Gowal et al., 2019),
and deploy these MD attacks to re-examine the robustness of 12 adversarial training-based defense
models. We find that 6 of them are susceptible to imbalanced gradients, and their robustness originally
evaluated by the PGD attack drops significantly against our MD attacks.

∗Equal contribution.
†Corresponding authors.
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2 IMBALANCED GRADIENTS AND MARGIN DECOMPOSITION ATTACK

We denote a clean sample by x, its class by y ∈ {1, · · · , C} withC the number of classes, and a DNN
classifier by f . The probability of x being in the i-th class is computed as pi(x) = ezi/

∑C
j=1 e

zj ,
where zi is the logits for the i-th class. The goal of adversarial attack is to find an adversarial example
xadv that can fool the model into making a false prediction (e.g. f(xadv) 6= y), and is typically
restricted to be within a small ε-ball around the original example x (e.g. ‖xadv − x‖∞ ≤ ε).
Imbalanced Gradients. The gradient of the margin loss (e.g. `margin(x, y) = zmax − zy) is the
combination of the gradients of its two individual terms (e.g. ∇x(zmax−zy) = ∇xzmax+∇x(−zy)).
Imbalanced Gradients is the situation where the gradient of one loss term dominates that of other
term(s), pushing the attack towards a suboptimal direction.
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Figure 1: A toy illustration of im-
balanced gradients at x = 0: the
gradient of margin loss (z2 − z1) is
dominated by its−z1 term, pointing
to a suboptimal attack direction to-
wards +2, where x is still correctly
classified.

Toy Example. Consider a one-dimensional classification task
and a binary classifier with two outputs z1 and z2 (like logits
of a DNN), Figure 1 illustrates the distributions of z1, z2 and
z2 − z1 around x = 0. The classifier predicts class 1 when
z1 ≥ z2, otherwise class 2. We consider an input at x = 0
with correct prediction y = 1, and a maximum perturbation
constraint ε = 2 (e.g. perturbation δ ∈ [−2,+2]). The attack
is successful if and only if z2 > z1. In this example, imbal-
anced gradients occurs at x = 0, where the gradients of the two
terms ∇xz2 and ∇x(−z1) have opposite directions, and the
attack is dominated by the z1 term as∇x(−z1) is significantly
larger than ∇xz2. Thus, attacking x with the margin loss will
converge to +2, where the sample is still correctly classified.
However, for a successful attack, x should be perturbed to-
wards -2. In this particular scenario, the gradient ∇xz2 < 0
alone can provide the most effective attack direction. Note that
this toy example was motivated by the loss landscape of DNNs
when imbalanced gradient occurs.

2.1 MARGIN DECOMPOSITION ATTACK

The above observations motivate us to exploit the individual terms in the margin loss so that the
imbalanced gradients situation can be circumvented. Specifically, we propose Margin Decomposition
(MD) attack that decomposes the attacking process with a margin loss into two stages: 1) alternately
attacking the two individual terms (e.g. zmax or −zy) at different restarts; then 2) attacking the full
margin loss. Formally, our MD attack and its loss functions in each stage is defined as follows:

xk+1 = Πε(xk + α · sign(∇x`
r
k(xk, y))), (1)

`rk(xk, y) =


zmax if k < K

2 and r mod 2 = 0

−zy if k < K
2 and r mod 2 = 1

zmax − zy if k ≥ K
2 ,

where, Π is the projection operation that projects the perturbed sample back within ε-ball, k ∈
{1, . . . ,K} is the perturbation step, r ∈ {1, . . . , n} is the r-th restart, mod is the modulo operation
for alternating optimization, and `rk defines the loss function used at the k-th step and r-th restart.
The loss function switches from the individual terms back to the full margin loss at step K

2 . The first
stage exploits individual loss terms to rebalance the imbalanced gradients, while the second stage
ensures that the final objective (e.g. maximizing the classification error) is achieved. Note that, not
all defense models have the imbalanced gradients problem. A model is susceptible to imbalanced
gradients if there is a substantial difference between robustness evaluated by PGD attack and that by
our MD attack. In addition, to increase attack’s diversity, we initialize the perturbation in the first
stage by perturbing one step with size 2 · ε along the opposite direction of the other loss terms that
are left unexplored. We also propose a Margin Decomposition Multi-Targeted (MDMT) attack, a
multi-targeted version of our MD attack. Like the MT attack (Gowal et al., 2019), MDMT will attack
each possible target class one at a time, then select the strongest adversarial example at the end. The
complete algorithms of MD and MDMT can be found in Appendix A, and an ablation study can be
found in Appendix C.
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3 EXPERIMENTS

We apply our MD attacks to evaluate the robustness of 12 state-of-the-art defense models. We
focus on adversarial training models, which are arguably the strongest defense approaches to date
(Athalye et al., 2018; Croce and Hein, 2020). All the models are WideResNet variants (Zagoruyko
and Komodakis, 2016) and are trained against perturbation ε = 8/255 on CIFAR-10. For each
defense model, we either download their shared models or retrain the models using the official
implementations, unless explicitly stated. Further details about the models can be found in Appendix
B. We apply current state-of-the-art attacks and our MD attacks to evaluate the robustness of these
models in a white-box setting.

Baseline Attacks and Settings. Following the current literature, we consider 6 existing attacks: 1)
FGSM, 2) PGD, 3) L∞ version of CW attack (Madry et al., 2018; Wang et al., 2019), 4) MultiTargeted
(MT) attack and two concurrently proposed attackss 5) AutoAttack (AA), and 6) Output Diversified
Initialization (ODI). The evaluation is done under the same maximum perturbation ε = 8/255 for
training. As AA is an ensemble of four different attacks, we compare our MD attacks with these
four attacks independently. We show the best result of individual attacks from AA in Table 1 and
the full result of AA are reported in Appendix E. For attacks of AA and ODI, we use the official
implementation and parameter setting. For regular iterative attacks, we set the step size to α = ε/4
and the total perturbation steps to K = 40. For our MD and MDMT, we use a large step size
α = 2 · ε in the first stage for a better exploration and α = ε/4 in the second stage to ensure a stable
optimization for the final objective. For regular attacks PGD, CW and our MD, we use 2 random
restarts, while for more powerful attacks ODI, MT and MDMT, we use 20 restarts (MT attacks
require more restarts to explore multiple target classes). A parameter analysis of our MD attack can
be found in Appendix D. Adversarial robustness is measured by the model accuracy on adversarial
examples crafted by these attacks on CIFAR-10 test images.

3.1 EVALUATION RESULTS

Table 1 reports the full evaluation result, where RST, UAT and TRADES are the top 3 best defenses.
The SAT defense demonstrates ∼ 45% robustness consistently against either PGD or stronger attacks
such as MT, attacks of AA, ODI and our MD attacks. This indicates that SAT does not have
imbalanced gradients and indeed brings consistent robustness, which is in line with other studies
about SAT (Athalye et al., 2018; Croce and Hein, 2020; Uesato et al., 2018). While the rest 11 defense
models are all developed based on SAT, they exhibit quite different robustness. Only 4 defenses
including RST, UAT, TARDES and MART are indeed improved over SAT, while the other 7 defense
models are actually not as robust as SAT, according to our MD or MDMT attacks. For the 4 improved
defenses, their PGD robustness (e.g. robustness evaluated by PGD attack) can still be reduced by
stronger attacks MT, attacks of AA, ODI or our MD attacks. Considering that their robustness drops
against our MD attacks are within 5%, their drops may be caused by sufficient explorations such as
more random restarts or better initialization rather than imbalanced gradients. Indeed, MT, attacks of
AA, and ODI with more random restarts, multiple target classes, and better initialization can also
reduce their robustness to the same level as our MD attacks.

Out of the 7 unimproved defenses, our MDMT attack can reduce the PGD robustness of 6 models
(e.g. MMA, Bilateral, Adv-Interp, FeaScatter, Sense, and JARN-AT11) by at least 9%. On all 7
unimproved defenses, our MD attacks are always the most effective attacks compared to either classic
attacks FGSM, PGD, CW, or more recent attacks MT, attacks of AA and ODI. Note that, for 4 (e.g.
MMA, Bilateral, Adv-Interp, and Sense) out of the 7 unimproved defenses, even state-of-the-art
attacks MT or attacks of AA evaluate them to be more robust than SAT, which is not necessarily
the case according to our MD attacks. Particularly, against the MT attack, the robustness of SAT is
45.34%, while the robustness of Bilateral, Adv-Interp and Sense are 55.07%, 61.22% and 46.22%,
respectively. For the MMA defense, best attack from AA evaluates its robustness to be 47.38%, which
is slightly higher than SAT’s 45.26%. However, under our MD attacks, all 4 models show much lower
robustness than SAT (3%-10% lower). Next, we will investigate the imbalanced gradients problem in
the unimproved defenses.
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Table 1: Robustness (%) of 12 defense models evaluated by different attacks. The attacks are divided
into 2 groups: 1) traditional attacks for robustness evaluation and our MD (column 3-6); and 2) more
recent attacks and our MDMT (column 7-10). The defenses are also divided into 2 groups: 1) SAT or
improved defenses (top rows); and 2) those that are not improved over SAT (bottom rows). Results in
(·) in the MDMT column show the robustness decrease compared to the PGD attack.

Defense Clean FGSM PGD CW MD MT Best of AA ODI MDMT
RST 89.69 69.60 62.09 60.87 60.17 59.80 60.62 59.93 59.86 (-2.23)
UAT 86.46 68.31 61.08 62.11 59.36 56.72 58.20 57.98 56.65 (-4.43)
TRADES 84.92 60.87 55.00 53.69 53.10 52.67 53.82 52.68 52.78 (-2.22)
MART 83.09 61.43 56.10 53.02 51.84 51.12 51.55 51.15 51.07 (-5.03)
SAT 86.83 56.88 45.94 45.73 45.64 45.34 46.38 45.26 45.25 (-0.69)
Dynamic 85.35 55.19 46.36 45.53 43.93 42.75 43.64 43.03 42.69 (-3.67)
MMA 84.62 61.85 51.09 52.05 45.63 42.62 47.38 43.00 41.92 (-9.17)
Bilateral 90.73 71.10 60.95 57.82 39.82 55.07 41.36 38.65 37.21 (-23.74)
Adv-Interp 90.25 77.94 72.48 67.92 45.33 61.22 40.60 41.43 37.59 (-34.89)
FeaScatter 89.98 77.40 68.64 57.10 43.12 43.10 40.84 39.61 36.86 (-31.78)
Sense 91.51 72.71 59.86 57.67 40.64 46.22 38.88 38.15 35.25 (-24.61)
JARN-AT1 81.96 61.48 42.50 27.46 15.03 16.01 37.25 14.90 14.60 (-27.90)

Table 2: Robustness (%) of WideResNet-34-10 models trained with/without label smoothing.

Defense FGSM PGD MD

SAT 56.88 46.47 45.71
+ Label Smoothing 59.10 51.15 44.54
Natural 26.41 0.00 0.00
+ Label Smoothing 48.09 10.86 0.00

3.2 LABEL SMOOTHING CAUSES IMBALANCED GRADIENTS.

The PGD robustness of Bilateral, FeaScatter, and Adv-Interp decrease the most (e.g. 23%− 34%)
against our MDMT attack, which indicates that these defenses may have caused imbalanced gradients.
All three defenses use label smoothing as part of their training scheme to improve adversarial training,
which we suspect is one common cause of imbalanced gradients. Given a sample x with label y, label
smoothing encourages the model to learn an uniform logits or probability distribution over classes
j 6= y. This tends to smooth out the input gradients of x with respect to these classes, resulting
in smaller gradients. In order to confirm label smoothing indeed causes imbalanced gradients, we
train a WideResNet-34-10 model using natural training (‘Natural’) and SAT with or without label
smoothing (smoothing parameter 0.5). We report their robustness in Table 2. The PGD robustness
of the naturally-trained model also “increases" to 10.86%, which is still 0% under our MD attack.
Using smoothed labels in SAT defense also “increases" PGD robustness by almost 5%, which in fact,
decreases by 1%. These evidences confirm that label smoothing indeed causes imbalanced gradients,
leading to overestimated robustness if evaluated by regular attacks like PGD. Interestingly, it appears
that adversarial training can inhibit moderately the imbalanced gradients problem of label smoothing.
This is because the adversarial examples used for adversarial training are specifically perturbed to the
j 6= y classes, thus helping avoid uniform logits over classes j 6= y to some extent.

4 CONCLUSION

In this paper, we identify Imbalanced Gradients, a new situation where traditional attacks such as
PGD can fail and produce overestimated adversarial robustness. We also proposed a new attack
called Margin Decomposition (MD) attack to leverage imbalanced gradients via a two-stage attacking
process. By evaluating 12 state-of-the-art defense models, we find that 6 of them are susceptible to
imbalanced gradients and their PGD robustness suffers a significant drop against our MD attacks.
We also identified label smoothing as a possible cause of imbalanced gradients. Our results indicate
that future defenses should avoid causing imbalanced gradients to obtain more reliable adversarial
robustness.
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A ALGORITHMS OF MT AND MDMT ATTACKS

We also propose a Margin Decomposition Multi-Targeted (MDMT) attack, a multi-targeted version
of our MD attack. The loss terms used by MDMT at different attacking stages are defined as follows:

`rk(xk, y) =


zt if k < K

2 and r mod 2 = 0

−zy if k < K
2 and r mod 2 = 1

zt − zy if k ≥ K
2 ,

(2)

where, zt is the logits of the target class t 6= y. Like the MT attack, MDMT will attack each possible
target class one at a time, then select the strongest adversarial example at the end. That is, the target
class t 6= y will be switched to a different target class at each restart.

Algorithm 1 and Algorithm 2 below describe the complete attacking procedure of our Margin
Decomposition (MD) attack and its Multi-Targeted (MDMT) version.

Algorithm 1 Margin Decomposition Attack
1: Input: clean sample x, label y, model f .
2: Output: adversarial example xadv

3: Parameters: Perturbation bound ε, step size α, number of restarts n, number of steps K.
4: xadv ← x
5: for r ∈ {1, ..., n} do
6: Initialize x0 by one step of perturbation along the opposite direction of gradients.
7: for k ∈ {1, ...,K} do
8: Update xk by Eq. (1)
9: if `(xadv) < `(xk) then

10: xadv ← xk

11: end if
12: end for
13: end for
14: return xadv

Algorithm 2 Margin Decomposition MultiTargeted attack

1: Input: clean sample x, class label y, class set T , model f .
2: Output: adversarial example xadv
3: Parameters: Perturbation bound ε, PGD step size α, number of restarts n, number of steps K.
4: nr ← bn/|T |c, xadv ← x
5: for r ∈ {1, ..., nr} do
6: for t ∈ T do
7: Initialize x0 by one step of perturbation along the opposite direction of gradients.
8: for k ∈ {1, ...,K} do
9: Update xk by Eq. (2)

10: if `(xadv) < `(xk) then
11: xadv ← xk
12: end if
13: end for
14: end for
15: end for
16: return xadv

B 12 EXAMINED DEFENSE MODELS

We focus on adversarial training models, which are arguably the most effective defense models to date.
The 12 selected defense models are as follows. The standard adversarial training (SAT) (Madry et al.,
2018) trains models on adversarial examples generated by PGD attack. Dynamic adversarial training
(Dynamic) (Wang et al., 2019) trains on adversarial examples with gradually increased convergence
quality. Max-Margin Adversarial training (MMA) (Ding et al., 2018) trains on adversarial examples
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with gradually increased margin (e.g. the perturbation bound ε). For MMA, we evaluate the released
“MMA-32” model. Jacobian Adversarially Regularized Networks (JARN) adversarially regularize
the Jacobian matrices, and can be combined with 1-step adversarial training (JARN-AT1) to gain
additional robustness (Chan et al., 2020). For JARN, we only evaluate the JARN-AT1 as JARN
has already been completely broken in (Croce and Hein, 2020). We implement JARN-AT1 on the
basis of their released implementation of JARN. Sensible adversarial training (Sense) (Kim and
Wang, 2020) trains on loss-sensible adversarial examples (perturbation stops when loss exceeds
certain threshold). Bilateral Adversarial Training (Bilateral) (Wang and Zhang, 2019) trains on
PGD adversarial examples with adversarially perturbed labels. For Bilateral, we mainly evaluate
its released strongest model “R-MOSA-LA-8”. Adversarial Interpolation (Adv-Interp) training
(Zhang and Xu, 2020) trains on adversarial examples generated under an adversarial interpolation
scheme with adversarial labels. Feature Scattering-based (FeaScatter) adversarial training (Zhang and
Wang, 2019) crafts adversarial examples using latent space feature scattering, then trains on these
examples with label smoothing. TRADES (Zhang et al., 2019) replaces the CE loss of SAT by the
KL divergence for a better trade-off between robustness and natural accuracy. Based on TRADES,
RTS (Carmon et al., 2019) and UAT (Alayrac et al., 2019) improve robustness by training with 10×
more unlabeled data. Misclassification Aware adveRsarial Training (MART) (Wang et al., 2020)
further improves the above three methods with a misclassification aware loss function.

C ABLATION OF THE PROPOSED MD ATTACKS

In this section, we investigate the influence of three factors to our MD attack: 1) initialization method,
2) the second attacking stage, and 3) the stage ordering. We use AdvInterp as our target model, and
conduct the following attack experiments on CIFAR-10 test data.

Initialization Method. We compare the success rates of our MD attacks using random initialization
versus the opposite direction initialization (see Algorithm 1 and Algorithm 2). The results are reported
in Table 3. As can be observed, the opposite direction initialization demonstrates a clear advantage
over random initialization. Particularly, for MD attack, using opposite direction initialization can
improve the attack success rate by 8%, while for MDMT attack, the success rate can also be improved.

The Second Attacking Stage. We further investigate the importance of the second stage of attacking
with the full margin loss in our MD attacks. Here, we fix the initialization method to the opposite
direction initialization. The attack success rates with or without the second stage are also reported in
Table 3. We highlight that attacking the full margin loss via the second attacking stage can consistently
increase the success rate. Especially for MD attack, a 4.99% improvement can be achieved by the
second attacking stage.

The Ordering of the Stages. To verify that the ordering of the two stages is suitable for MD attacks,
we evaluate a new version of our MD attacks with the two stages are switched: the first stage optimizes
the full margin loss and the second stage explores the individual loss terms. The results are reported
in Table 3 (the last two columns). As can be observed, MD attacks become much less effective when
the two stages are switched. This is because

Table 3: Attack success rates (%) of our MD and MDMT attacks with 1) different initialization
methods, 2) with/without the second attacking stage, and 3) with/without stages being switched.
Experiments are conducted on defense model AdvInterp and dataset CIFAR-10.

Attacks Initialization Second Attacking Stage Switching Stage
Random Opposite without with Yes No

MD 46.32 54.67 49.68 54.67 48.41 54.67
MDMT 61.07 62.41 61.82 62.41 60.62 62.41

D PARAMETER ANALYSIS OF THE PROPOSED MD ATTACK

We further investigate the sensitivity of our MD attack to two parameters: 1) the number of perturba-
tion steps, and 2) the step size. Here, we focus on the first attacking stage as the second stage is a
typical PGD attack, which has been thoroughly investigated in (Wang et al., 2019).
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Number of Steps for the First Stage. The total number of perturbation steps is set to K = 40.
When we vary the perturbation steps of the first stage, the remaining steps will be given to the second
stage. MD attack will reduce to the regular PGD attack if the perturbation steps of the first stage
is set to 0. Here, we vary the steps from 5 to 40 in a granularity of 5. The step size is set to 8/255
and 2/255 for the first and second attacking stage, respectively. The robustness of 4 defense models
including Bilateral, Adv-Interp, FeaScatter and Sense are illustrated in Figure 2a. As can be observed,
the performance of our MD attack tends to drop at both ends, and the best performance is achieved
at [20, 30]. Therefore, we suggest to simply use half of the perturbation steps for the first stage (e.g.
switching to the second stage at the K

2 -th step).

Step Size for the First Stage. We vary the step size used for the first stage from 2/255 to 16/255 in
a granularity of 2/255. Following the above experiments, here we fix the number of steps in each
stage to 20. The evaluated robustness (or model accuracy on the generated attacks) of defense models
Bilateral, Adv-Interp and FeaScatter are illustrated in Figure 2b. A clear improvement of using large
step size in the first stage can be observed. Therefore, we suggest to use a large step size for the first
stage of exploration.
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Figure 2: Parameter analysis of MD attack: (a) the accuracies of 5 defense models under MD attacks
with different number of perturbation steps in the first stage; (b) the accuracies of 5 defense models
under MD attacks with different step sizes in the first stage.

E COMPARISON TO THE FOUR INDIVIDUAL ATTACKS IN AUTOATTACK

In this section, we compare the model robustness evaluated by the individual attacks in the AA
ensemble with our MD attacks. These experiments follow the same setting as in Section 3. The
results are shown in Table 4. As can be observed, our MDMT attack demonstrates a superior
performance across all the defense models. Moreover, our MD attack which is as efficient as PGD
attack can even achieve better performance than all individual attacks on 6 out of 12 models.
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Table 4: Attack success rates (%) of the 4 individual attacks (column 2-6) in AA attack and our MD
attacks (column 6-7). The best results are highlighted in bold. The second best results are highlighted
in underline

Defense APGDCE APGDDLR FAB Square MD MDMT

RST 61.47 60.64 60.62 66.63 60.17 59.86
UAT 59.86 62.03 58.20 66.37 59.36 56.65
TRADES 55.08 54.04 53.82 59.48 53.10 52.78
MART 55.52 52.51 51.55 57.45 51.84 51.07
SAT 46.40 46.56 46.38 53.13 45.64 45.25
Dynamic 45.81 45.86 43.64 53.49 43.93 42.69
MMA 49.40 50.18 47.38 55.48 45.63 41.92
Bilateral 58.26 43.11 41.55 59.33 39.82 37.21
Adv-Interp 69.36 49.43 40.60 66.87 45.33 37.59
FeaScatter 62.03 48.96 40.84 59.12 43.12 36.86
Sense 54.80 48.41 38.88 61.31 40.64 35.25
JARN-AT1 37.25 67.55 67.48 75.32 15.03 14.60
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