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ABSTRACT

Adversarial attacks optimize against models to defeat defenses. We argue that
models should fight back, and optimize their defenses against attacks at test-time.
Existing defenses are static, and stay the same once trained, even while attacks
change. We propose a dynamic defense, defensive entropy minimization (dent), to
adapt the model and input during testing by gradient optimization. Our dynamic
defense adapts fully at test-time, without altering training, which makes it compati-
ble with existing models and standard defenses. Dent improves robustness to attack
by 20+ points absolute for state-of-the-art static defenses against AutoAttack on
CIFAR-10 at €, = 8/255.

1 INTRODUCTION: ATTACK, DEFEND, AND THEN?

Deep networks are vulnerable to adversarial attacks: input perturbations that alter natural data to
cause errors or exploit predictions |Szegedy et al.| (2014). As deep networks are deployed in real
systems, these attacks are real threats|Yuan et al.[(2019), and so defenses are needed. For every new
empirical defense, a new attack follows, in a loop [Tramer et al.[(2020). The strongest attacks, armed
with gradient optimization, adapt to circumvent defenses that do not. Their iterative updates form an
even tighter loop to ensnare models that remain fixed during testing. In a cat and mouse game, the
mouse must keep moving to survive.

Current defenses, deterministic or stochastic, stand still: once trained, they are static and do not adapt
during testing. Adversarial training Goodfellow et al.|(2014); Madry et al.|(2018) learns from attacks
during training, but suffers when the attacks differ during testing, such as by optimizing over larger
perturbations or measuring distortion by a different norm. Stochastic defenses alter the network
Dhillon et al.| (2018)) or input |Guo et al.| (2018)); Cohen et al.| (2019) during testing, but adaptive
attacks can still optimize in expectation |Athalye et al.|(2018)). Static defenses that stay the same are
at a disadvantage against adaptive attacks that change.

Our dynamic defense fights adversarial gradients with defensive gradients to adapt during testing
(Figure[T)). These defensive gradients update the model and input transformations on every input,

attacker x4+ z+0672 gzt z+072 4ot

8 K| XK-K-K|K-K5

A2 g4 AT 4 AT

xBREXE DS

defender  (a) train (b) static defense (c) dynamic defense

Figure 1: Attacks defeat defenses by optimization of the input at test-time. Adversarial training
optimizes at train-time (a), but is static at test-time (b). We fight gradients with gradients by counter-
optimization of model and input transformations. Our dynamic defense adapts during testing (c), so
the attack cannot hit the same defense twice, to improve robustness.
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natural or adversarial. Depending on the input makes the model a moving target that is more
difficult to attack. Our method relies on gradients and batch statistics, inspired by domain adaptation
approaches that update on test data|Sun et al.| (2020); Schneider et al.[(2020); |Liang et al.[(2020a3b);
Wang et al.| (2021). Our defense objective is entropy minimization to maximize model confidence,
so we call our method dent for defensive entropy. In pivoting from train-time to test-time, we equip
the model to defend itself and keep changing, so the attacker never hits the same defense twice. By
adapting, dent can change after the attack, and has the last move advantage.

Our experiments show that dent raises the accuracy of state-of-the-art static defenses on adversarial
and natural data. We evaluate on CIFAR-10 against AutoAttack, including white-box and black-box
attacks, and improve robustness in all cases. Dent defends models with or without adversarial training,
and its model adaptation and input adaptation both help when jointly optimized for test-time defense.
When combined with adversarial training, dent can adapt not just batch-wise but instance-wise, by
optimizing a different defense for each input.

2 DYNAMIC DEFENSE BY TEST-TIME ADAPTATION

Defensive entropy minimization (dent) is a dynamic defense: it adapts to the data during testing.
Dent does not alter training, and so it is compatible with existing models, and it can extend static
defenses like adversarial training. For compatibility with our defense, we simply need the model to
be differentiable for gradient optimization and probabilistic for entropy measurement. Therefore, we
apply dent to models with a static defense (adversarial training), and also apply it to “bare” models
(without any defense). We review preliminaries on adversarial attacks, describe the static defense of
adversarial training, and explain adaptation with our dynamic defense.

2.1 PRELIMINARIES

Letz € RYand y € {1,...,C} be an input and its corresponding ground truth. Given a model
f(-;0): R* — R parameterized by 6, the goal of the adversary is to craft a perturbation § € R?
such that the perturbed input £ = x + ¢ causes a prediction error f(x + 8;0) # y.

A targeted attack aims for a specific prediction of 3/, while an untargeted attack seeks any incorrect
prediction. The perturbation ¢ is constrained by a choice of ¢, norm and threshold e: {6 € R? |
[[0]l,, < €}. We consider the two most popular norms for adversarial attacks: (o and £5.

Adversarial training is a standard defense, formulated by Madry et al.| (2018) as a saddle point
problem,
argminE(, ) mgixL(f(x—l—(S;H),y), (D
6

which the model minimizes and the adversary maximizes with respect to the loss L(§, y), such as
cross-entropy for classification. The adversary iteratively optimizes d by projected gradient descent
(PGD), a standard algorithm for constrained optimization, for each step ¢ via

' =T0,(8'" + a - sign(Va—1 L(f(z +67150),))), 2

for projection II,, onto the norm ball for £,, < ¢, step size hyperparameter o, and random initialization
0. The model optimizes # against § to minimize the loss of its predictions on perturbed inputs. This
is accomplished by augmenting the training set with adversarial inputs from PGD attack.

2.2 DEFENSIVE OPTIMIZATION

As the adversary optimizes its perturbation §, our dynamic defense optimizes its model adaptation
A and input transformation Y. Our defense is dynamic because both A and ¥ depend on the input,
whether natural z or adversarial = + J. In contrast, static defenses depend only on the training data
through the model parameters 6, and stochastic defenses depend on randomness z ~ Plefense that is
independent of z, d.

The purpose of dynamic defenses is to move when the adversary moves. When the adversary submits
an attack x + &%, the defense can counter with ¢, A?. In this way, the defense always has the last
move, and therefore an advantage.
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(a) static
Figure 2: Against an adaptive attack, a defense must not remain static, but adapt in turn. The adversary
iteratively optimizes its attacks &', - - - , * against the model f. A static defense (left) does not adapt,
and may fail after enough attacks. Our dynamic defense (right) does adapt, and updates its defense
parameters A, 3 every time the adversary updates its attack 4.
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(b) dynamic

Note that our optimization-based defense does not fit in the framework of obfuscated gradients
Athalye et al.| (2018). Our defense does not rely on (1) shattered gradients, as the update does
not cause non-differentiability or numerical instability; (2) stochastic gradients, as the update is
deterministically computed from the input, model, and prior updates; nor (3) exploding/vanishing
gradients, as the update improves robustness with even a single step (although more steps do improve
further in practice). Rather the updates Xf, A’ change at every step t, such that the adversary is
always one step behind. This could be considered a stale gradient, as the attack §° is optimized
against to X ~1, A*~!, while the defense is adapted by ¢, A,

Defense objective Test-time optimization requires an unsupervised objective. Following tent[Wang
et al.| (2021), we adopt entropy minimization as our adaptation objective. Specifically, our defense
objective is to minimize the Shannon entropy |Shannon! (1948) H (%) of the model prediction during
testing J = f(w;0) for the probability g of class c: H(y) = =" o o P(Yc) logp(de).

For defense, this objective and its gradients are computed over batches. Batches are needed because
entropy minimization can have degenerate solutions for a single prediction (such as predicting any
class with probability one).

Defense parameters Dent updates input transformation Y. and model adaptation A. For the
input, dent updates Gaussian smoothing by gradient optimization to control the degree of blurring,
with parameter . To blur dynamically and efficiently, the Gaussian filter size is adjusted on the
fly Shelhamer et al.| (2019). While only a single parameter, it can have a strong effect on the local
statistics of the input. Furthermore, existing defenses motivate static smoothing against attacks Guo
et al.| (2018); |(Cohen et al.| (2019), which we now make dynamic. For the model, dent adapts
affine scale ~y and shift 3 parameters by gradient optimization and adapts mean  and variance o2
statistics by estimation. These are a small portion of the full model parameters 6 (j1% for ResNet-50
for example), concerning only the batch normalization layers [loffe & Szegedy| (2015)). However,
they have proven effective for conditioning a model on changes in the task [Perez et al.| (2018) or
data|Schneider et al.|(2020); 'Wang et al.| (2021]).

By default the scale y and shift 3 parameters are shared across inputs, and so adaptation updates
batch-wise. For further adaptation, dent can update instance-wise, with different affine parameters
for each input. In this way it adapts more than prior test-time adaptation methods with batch-wise
updates Wang et al.|(2021); |Schneider et al.[(2020).

Our adaptation of the input and model is a novel joint defense. Both transformations are differentiable,
so end-to-end optimization coordinates them against attacks as layered defenses. This coordination
is inspired by domain adaptation, but dent differs in its purpose and its unified loss. For domain
adaptation, CyCADA [Hoffman et al.| (2018)) also optimizes input and model transformations but does
so in parallel with separate losses. Our defensive optimization is joint and shares the same loss.

Defense updates In summary, the parameters of the model f and smoothing g are updated by
argming A H(f(g(z + 0;3);0 + A)), through test-time optimization. At each iteration, we first
estimate the normalization statistics u, o and then update the transformation parameters v, 5, 3 by
the gradient of entropy minimization.

When the adversary attacks with a perturbation 6¢, our dynamic defense reacts with its own ¢, A?. In
this way dent keeps pace with the attack and always has the last move. Figure [ shows how standard
static defenses do not update while dynamic defenses like dent do. Between batches, the defense
parameters are reset.
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Accuracy(%) Natural Adyersarial A » Step  Time Natural A(ll\éersarial
static dent static dent €oo = 95 €2=02

batch-wise A: [y, 8] x 1(shared) x  None 0 1.0x 95.6 8.8 9.2
Carmon et al.|(2019)  89.7 90.8 59.5 747 v/ None 1 3.6x 95.6 15.0 13.5
Ding et al.[(2020) 844 876 414 476 x  Stat. 0 1.0x 86.2 25.8 23.6
instance-wise A: [y, 3] x batch size V. Stat. 1 3.6x 86.3 27.5 244
Carmon ctal|(2019) 897 893 595 823 v, St 10 259x 863 37.6 30.9
Ding et al[(2020) 844 847 414 644  Dyma 10 261x 925 454 365

Table 1: Dent boosts the accuracy of state- Table 2: Ablation of dent’s model (A) and input ()
of-the-art static defenses. adaptation on a model without adversarial training.

3 EXPERIMENTS

We evaluate the effectiveness of dent for dynamic defense across multiple choices of attack and base
static defense. For attacks, we make use of AutoAttack |Croce & Hein| (2020), which includes four
different white-box (gradient) and black-box attacks, and report the worst across all attacks. For static
defenses to extend, we consider bare models without a defense, and robust models with adversarial
training, as it is the most resilient. For architectures, we experiment with residual networks and
their wide variants He et al.|(2016); Zagoruyko & Komodakis|(2016). For datasets, we evaluate on
CIFAR-10|Krizhevsky| (2009) as the most popular benchmark for adversarial robustness.

3.1 DYNAMIC DEFENSE FORTIFIES STATIC DEFENSE

We extend static adversarial training defenses with dent. Compared to “bare” models without defense,
the static defense of adversarial training achieves higher adversarial accuracy but lower natural
accuracy. Dent boosts adversarial accuracy further while reducing the natural accuracy gap.

Dent improves state-of-the-art static defenses. Table[T|shows static and dynamic results on CIFAR-
10. Dent improves in every case on adversarial accuracy, while improving or maintaining natural
accuracy. Dent adapts for 30/6 steps for batch/instance-wise model adaptation (without input
adaptation for these experiments, as we found this to conflict with adversarial training). Instance-wise
adaptation is more robust and more efficient.

3.2 DyYNAMIC DEFENSE HELPS WITHOUT STATIC DEFENSE

Dent does not alter model training or architecture, so it applies to various models at test time. For
instance, it does not assume adversarial training or a static defense of any kind. We demonstrate
that dent significantly improves the adversarial accuracy of standard, off-the-shelf models without
defenses. For these experiments, we evaluate against /., and /5 norm-bounded attack on CIFAR-10.
As the standard models have no static defense, we constrain the adversaries to smaller e perturbations.

Dent defends models without a static defense. Table |2|inspects how each part of dent improves
adversarial accuracy and natural accuracy. When applying sample-agnostic dent to standard models
without defenses, the model transformation with A is further helped by input transformation with
3. It already improves the adversarial accuracy from 8.8% to 15.0% against £, attacks with just a
single step. With 10 steps and the dynamic Gaussian defense, we can further improve the model’s
adversarial accuracy from 8.8% to 45.4% against /. attacks and from 9.2% to 36.5% against {2
attacks, achieving a significant boost of adversarial robustness with an acceptable sacrifice of natural
accuracy and no alteration of training (or re-training).

Dynamic input adaptation preserves natural accuracy. Gaussian blur significantly improves
adversarial accuracy. This agrees with prior work on denoising by optimization |Guo et al.[|(2018)) or
randomized smoothing (Cohen et al.|(2019). When tuned as a fixed hyperparameter, Gaussian blur
helps adversarial accuracy but hurts natural accuracy. In contrast, optimizing the Gaussian blur not
only improves adversarial accuracy, but also significantly reduces the side effect of natural accuracy
loss. Our dynamic Gaussian defense achieves 92.5% natural accuracy, which is comparable to the
95.6% accuracy of the standard model without adversarial training. It does so by test-time adaptation
to the data: on natural data, the learned X for the blur decreases to blur less and approximates the
identity transformation.
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