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ABSTRACT

One of the main motivations behind the study of adversarial examples is to un-
derstand the security implications of “imperceptible” changes in the inputs that
can change the prediction of machine learning models. One important criticism
of the studies of adversarial robustness is that they mostly use `p distance metrics
as a proxy for human perception. It is not clear if `p bounded perturbations are
always imperceptible, or if all imperceptible perturbations have a small `p norm.
Hence, it is often argued that we first have to formally and exactly model human
perception. In this paper, we prove that modeling human perception is at least as
hard as finding a robust model. We show that an “ideal” perception formulation
would immediately imply robustness in the information-theoretic sense.

1 INTRODUCTION

Research on adversarial examples studies the effect of imperceptible perturbations on classification
accuracy Goodfellow et al. (2014); Kurakin et al. (2016); Gu & Rigazio (2014); Qin et al. (2019).
Specifically, we consider adversaries who add a small noise ε to an image x to get another image
x′ = x+εwith two conditions. First, we need x′ to be close to x and perceived the same by a human.
In other words, the adversary needs ε to be an “imperceptible” change. On the other hand, we require
to change the prediction of a specific classifier h on the perturbed input, namely, h(x) 6= h(x′). To
account for the imperceptibility of the noise, researchers often consider `p bounded perturbations
as a proxy for human perception Madry et al. (2017); Shafahi et al. (2018); Cullina et al. (2018);
Cohen et al. (2019); Salman et al. (2019). One common criticism here is that `p norms are only
toy examples and do not capture human perception Gilmer et al. (2018); Laidlaw et al. (2020). In
other words, even if we get robustness against `p bounded adversaries, we would have still need to
consider adversaries that add noises beyond `p perturbation and are still imperceptible. The question
then arises:

Do we need to first model human perception in a precise way, and then incorporate the perception
model in the design of classifiers that are robust to imperceptible adversarial examples?

In this work, we argue that formulating human perception is a harder task than robustness at least in
the information-theoretic sense. In particular, we show that if one can formulate “imperceptibility”
as an algorithm then we can construct a robust inference algorithm that achieves strong robustness
guarantees against imperceptible adversarial examples. In the rest of the paper, we first model “im-
perceptibility” as a relationship with certain properties. Then we show that given such a relationship,
one can achieve strong robustness guarantees using a randomized inference algorithm. Although our
result is information-theoretic, In the end, we provide a simple toy example for such a relationship
and the robustness we achieve from it.

2 PERCEPTUAL EQUIVALENCE RELATION

We model imperceptibility as a relation between pair of images x and x′. In particular, we consider a
relation P where P (x, x′) = 1 means that x and x′ are perceived identically in human eyes. On the
other hand if P (x, x′) = 0 then x and x′ have visible differences, and humans would not consider
them identically. Note that here the relationship P is different from the concept that the learner tries
to learn. In particular, it is possible that P (x, x′) = 0 while the true labels for x and x′ are the same.
For instance, considering the case of learning a classifier for classifying cats and dogs, for any two
distinct cat images in the dataset we would probably have p(x, x′) = 0 although the labels are equal
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for these two photos. This is because humans would perceive different cat photos differently based
on many other aspects that exist in the image. For example, changing the color of the cat, or the
background can completely change the human perception.

Why relation instead of metric? As stated above, we model perception as a relationship rather
than a distance metric. In particular, two images x and x′ either look the same or do not. On the
other hand, a metric would define a real value for a distance between two images. We believe that an
ideal perception formulation should not be based on real value distances between different images
as humans do not assign numbers to the difference between identically looking images.

Additionally we believe the ideal perception relationship P should have several properties:

1. Reflective: For any image x we have P (x, x) = 1. This means that two images that are
exactly identical are equivalent in human eyes too.

2. Symmetric: For all pairs of images x, x′ such that P (x, x′) = 1 we have P (x′, x) = 1. This
is expected because we the order of two images is irrelevant in the perception relationship.

3. Transitive: For any three images x, x′, x′′ such that P (x, x′) = 1 and P (x′, x′′) = 1, then
we have P (x, x′′) = 1. Again, recall that perceptual relation is supposed to capture a
relationship between pairs of images (x, x′) in a way that P (x, x′) = 1 if and only if x
and x′ have no difference in human eyes. Using this logic, we can justify the transitivity
for perceptual relation. Namely, if x and x′ create the same mental picture in human brain,
and x′ and x′′ also create the same mental picture, then x and x′′ should be also considered
equal in human eyes. Note that for distance based metrics (which are different than our
approach), this property does not hold. For instance if the perceptual relation is modeled
based on a threshold τ on `p distance of two images, then this property does not hold
because x and x′′ can potentially have distance 2τ . Indeed, we believe this shows one of
the shortcomings with `p metrics in modeling human perception.

We know that any relationship with the three properties above makes an equivalence relation in
the image space. For such a relation P , we use [x]P to denote the equivalence class of x, that
is, [x]P = {y ∈ S;P (x, y) = 1}, the subset of all images x′ that are perceived identical to x.
These equivalence classes will cluster the space into disjoint clusters. In the next section, we will
see how this clustering can immediately give us robustness against adversarial examples that are
imperceptible with respect to P .

3 PERCEPTUAL ROBUSTNESS

Before stating our main theorem about robustness, we define robustness under an arbitrary percep-
tual relation that satisfies the conditions mentioned in Section 2.

Definition 1 (Perceptual robustness). The robust accuracy under perception relation P , for a dis-
tribution µ and a classifier h and a concept function c is defined as:

AdvRiskP (h, µ, c) = E
x←µ

[ max
x′∈[x]P

Pr[h(x′) 6= c(x)].

As we mentioned in Section 2, the perceptual relation P is distinct from the concept function in
the sense that there could exist x and x′ such that P (x, x′) = 0 while c(x) = c(x′). However, for
the tasks that humans can perform, such as classifying cats and dogs, we would have consistency
between P and c meaning that if P (x, x′) = 1 then we should have c(x) = c(x′). This is because if
two images are identical to a human, then the labels assigned to them should be equal, independent
from the task. Below we formalize this notion.

Definition 2 (Consistent concept functions). A concept function c is consistent with relation P if

∀x, x′ s.t P (x, x′) = 1; c(x) = c(x′).

Now, we define a transformation that uses the equivalent classes [x]P for the perceptual relation and
transforms the distribution of images to a new distribution.
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Definition 3. For an equivalence relation P and a distribution µ we define a transformed distribu-
tion µP that is distributed based on the following probability distribution function:

∀x ∈ Supp(µ) : µP (x) =

∫
Supp(µ)

P (x, y)dµ(y)

Now we have the following Theorem about robustness against perception relations that have all the
properties of an equivalence relation. The proof is provided in the supplemental material.
Theorem 4. Let P be a perception relation that has all properties of an equivalence relation. Also,
let c be a concept function consistent with P and µ a distribution of instances. If there is classifier
hp that has high benign accuracy on µp, namely Risk(hp, µp, c) ≤ ε, Then there is a classifier h for
distribution µ with high robust accuracy. That is,

AdvRiskP (h, µ, c) ≤ ε.

3.1 ALGORITHMIC ASPECTS OF PERCEPTUAL ROBUSTNESS

Theorem 6 shows how one can use the perceptual relationship to achieve robustness in three steps.
The first step transforms the distribution of training examples to another distribution. The second
step uses this transformed distribution to do standard training. The third step use the model obtained
in the second step to infer the correct label for a given instance in a robust and accurate way. the dis-
tribution transformation algorithm, the training algorithm, and the inference algorithm are described
Algorithms 1 and 2 and 3 respectively. The first algorithm is the uniform sampling step which is
used for transforming the distribution.

Algorithm 1 Uniform Sampling
Input

x An instance sampled from distribution D
P A circuit capturing the perceptual relation

Output
x̃ A uniformly sampled instance x such that P (x, x̃) = 1

1: Create a circuit Px that is same as P but with x hard-coded as one of the inputs.
2: Uniformly sample an instance x̃ such that Px(x̃) = 1.

Given the sampling algorithm, the remaining steps are easy. We need to implement the training and
inference by first transforming the training and test sets using our transformation.

Algorithm 2 Robust Training
Input

S A dataset S
P A circuit describing the perceptual relation
L A learning algorithm

Output
h A classifier

1: For all for (xi, yi) ∈ S call the Uniform Sampling algorithm on xi based on P to get x′
i and construct a

dataset S′ = {(x′
1, y1), . . . , (x

′
n, yn)}.

2: run L on S′ to get a classifier h and output h.

Theorem 6 proves that the inference algorithm 3 will be robust to imperceptible changes. However,
one might still question if we can implement the sampling algorithm. In particular, it might be com-
putationally hard to uniformly sample another image that is imperceptible from the original image.
Note that one can use rejection sampling scheme where many samples are generated uniformly at
random from the the whole space until an imperceptible image is found. This technique will not
be effective in cases where the space is high dimensional. Can we propose any better strategy for
sampling imperceptible images? To answer this question, we have the following Theorem which is
directly followed by the work of Bellare et al. (2000). The proof sketch for this Theorem is presented
in Appendix A.
Theorem 5. Given an NP oracle (i.e. a SAT solver), the Uniform Sampling Algorithm 1 can be
implemented in probabilistic polynomial time.

3



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Algorithm 3 Robust Inference
Input

x query point
P A circuit describing the perceptual relation
h A classifier

Output
y The predicted label

1: Call Uniform Sampling algorithm on x using P to get x′

2: Call h on x′ to get y and output y.

Table 1: Caption
Setting Vanilla Adversarial Robust

Accuracy 99.64% 1.94% 99.51%

Relation to Randomized Smoothing We also note that the proposed framework of sampling from
the neighboring imperceptible images and running the classifier on them is similar to the ideas used
in randomized smoothing Cohen et al. (2019); Salman et al. (2019); Li et al. (2018). Random-
ized smoothing usually deals with robustness to perturbations of bounded lp norm. lp distances do
not satisfy the transitivity requirement and our theorems do not apply to them. However, the idea of
randomized smoothing is closely related to the idea used here for achieving robustness. Namely, ran-
domized smoothing has a sampling procedure where given an input instance x, we first sample from
around x according to a symmetric distribution. Based on the tail analysis of these distributions, one
can argue that if two given instances x and x′ are close in lp distance then the sampling distribution
applied on them would sample from distributions that are close and hence one can achieve provable
robustness. On the other hand, in Algorithm 1, we uniformly sample from the exact equivalence
class which means the imperceptible images are mapped to exactly identical distributions and hence
we have achieved stronger robustness guarantees.

4 TOY CANDIDATES FOR PERCEPTUAL RELATIONSHIP

The conditions of perceptual relationship described in Definition 2 are not satisfied for `p distances
that are common in the study of adversarial robustness. However, there are several examples that
satisfy all these examples. For example, consider an arbitrary feature extractor F that maps the input
instances into a set of discrete features. One possible way of defining a perceptual metric is use F
with exact matching, namely P (x, x′) = 1 if and only if F (x) = F (x′). This generic framework
covers many types of perturbation. For example, if F down-samples an input image to a less detailed
image, and then the corresponding candidate for the perceptual metric will only output p(x, x′) = 1
if the down-sampled version of x and x′ are exactly equal. Or if F is a feature extractor that removes
the rotation noise, then for corresponding perceptual metric would output P (x, x′) = 1 if x and x′
are rotated versions of each other. In the rest of the section, to better demonstrate the effectiveness of
our algorithm, we use our algorithm on a simple version of patch attacks with a fixed patch location.

The patch attack is an attack that happens on image classifiers where the input image might be
perturbed in one local area in the image. We focus on the case that there is one patch at one fixed
location. This threat model satisfied all three properties in Section 2. We provide a simple evaluation
on ImageNette, which is a 10-class subset of ImageNet dataset. All images are resized and cropped
into 224×224 pixels. We use ResNet-50 as our base classifier and we consider a 40×40 patch at the
left upper corner of the image.

Effectiveness of patch attacks. Originally, without any defense, one single patch at the image
corner can degrade the model accuracy from 99.64% to 1.94%.

robustness. We observe that if we have a perfect perceptual metric, we can achieve a robust accuracy
(99.51%) that is close to the vanilla model (99.64%)
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A APPENDIX

Theorem 6. Let P be an perception relation that has all properties of an equivalence relation. Also
let c be a concept function consistent with P and µ a distribution of instances. if there is classifier
hp that has high benign accuracy on µp, namely Risk(hp, µp, c) ≤ ε. Then there is a classifier h for
distribution µ with high robust accuracy. That is,

AdvRiskP (h, µ, c) ≤ ε.

Proof. We first show how to construct the classifier h using hP . On a given instance x, h will first
sample a point xp uniformly at random from [X]P . Then h will query hp on xp to get y and outputs
y.

We now show that this classifier will have high robust accuracy.

AdvRisk(h, µ, c) = E
x←µ

[ max
x′∈[x]p

Pr[h(x′) 6= c(x)]]

= E
x←µ

[ max
x′∈[x]p

Pr
xp←[x′]P

[hp(xp) 6= c(x)]]

= E
x←µ

[ max
x′∈[x]p

Pr
xp←[x]P

[hp(xp) 6= c(x)]]

= E
x←µ

[ Pr
xp←[x]P

[hp(xp) 6= c(x)]]

= E
x←µ

[ Pr
xp←[x]P

[hp(xp) 6= c(xp)]]

= E
xp←µp

[hp(xp) 6= c(xp)]

= Risk(hp, µp, c) = ε.

This finishes the proof.

Theorem 7. Given an NP oracle (i.e. a SAT solver), the Uniform Sampling Algorithm 1 can be
implemented in probabilistic polynomial time.

Proof. Based on the work of (Bellare et al., 2000) we know that given an NP-oracle, one can sample
a valid proof uniformly at random among all the valid proofs that prove the presence of an instance
x in any given language Π ∈ NP . Here, we want to sample images that are imperceptible from
x based on a relation P . As described in algorithm 1, we need to uniformly sample x′ such that
P (x, x′) = 1. If we look at P as the verifier for an NP language, x as the instance and x′ as the
proof. This verification algorithm will give us a language that includes all valid images as each
input x has a proof x. Sampling a proof for an instance x in this language would exactly translate
to sampling an imperceptible image x′, uniformly at random. Therefore, the result of Bellare et al.
(2000) shows us that we can sample imperceptible images uniformly at random in probabilistic
polynomial time, given an NP oracle.
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