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ABSTRACT

We focus on the use of proxy distributions, approximations of the underlying dis-
tribution of the training dataset, in improving robust generalization of adversarial
training. Adversarially trained networks, when trained on a limited number of
samples available in the training set, suffer from a large generalization gap in the
robust accuracy. Using proxy distribution, from which we can sample an unlim-
ited number of data points, can enable us to 1) investigate the effect of the number
of training samples 2) reduce the robust generalization gap in adversarial train-
ing. Earlier Min et al. (2020) argued that more training data can both help or
hurt generalization based on the strength of the adversary. Here, using state-of-
the-art attacks in adversarial training and training with up to 2M images, we find
that more data continues to help generalization in deep neural networks. Next,
we ask when incorporating additional samples from the proxy distribution will
help? Here we prove that the difference of the robustness of a classifier on proxy
and training dataset distribution is upper bounded by the conditional Wasserstein
distance between them. It confirms the intuition that samples from a proxy distri-
bution closely approximating training dataset distribution should be able to boost
performance. Motivated by this, we leverage samples from state-of-the-art gen-
erative models, which can closely approximate training distribution, to improve
robustness. In particular, we improve robust accuracy up to 6.5% and 5.0% in l∞
and l2 threat model, respectively, on the CIFAR-10 dataset.

1 INTRODUCTION

To instill robustness against adversarial examples in deep neural networks, adversarial training re-
mains the most effective technique (Madry et al., 2018; Zhang et al., 2019; Pang et al., 2021).
However, adversarially trained networks, when trained on a limited number of images available in
curated datasets such as CIFAR-10 (Krizhevsky et al., 2009), suffers from a large generalization gap
in robust accuracy. In this work, we approach adversarial training on these datasets in conjunction
with a proxy distribution. We refer to approximations of the underlying distribution of these curated
datasets as proxy distributions. Our use of proxy distributions allows us to target the following two
objectives. 1) Since we can sample an unlimited number of samples from the proxy distribution,
it allows us to investigate the effect of the number of training samples on the robust generalization
of adversarial training 2) Using samples from proxy distribution to reduce the robust generalization
gap in adversarial training.

We first investigate the effect of the number of training samples in adversarial training. Earlier
works (Carmon et al., 2019; Uesato et al., 2019) demonstrated improved generalization of adver-
sarial training by expanding the training dataset size using an additional set of curated images. Re-
cently Min et al. (2020) argued that more training data can both help or hurt generalization based on
the strength of the adversary in adversarial training. However, Min et al. (2020) works with simple
problems such as Gaussian mixture classification or a two-dimensional classification. It remains un-
clear how adversarial training behaves with the number of samples on the scale of computer vision
tasks and deep neural networks. We answer this question by training a deep neural network on an
increasing number of images (ranging from 1K to 2M). We observe that both clean and robust test
accuracy continues to improve with the number of samples.
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Next, we ask when incorporating additional samples from the proxy distribution will help in im-
proving robustness on datasets such as CIFAR-10? Here we provide a theoretical analysis on how
robustness of a classifier trained on one distribution transfers to the other. In particular, we prove
that the difference in robustness of a classifier on the two distributions is upper bounded by the
Wasserstein distance between them. It confirms the intuition that samples from a proxy distribution
that closely approximates training dataset distribution should be able to boost robustness.

Motivated by this intuition, we aim to leverage proxy distributions, which closely approximate the
underlying distribution of training data, to improve performance. Here we propose to simultaneously
train on the original training set and a set of additional images sampled from the proxy distribution.
We use state-of-the-art generative models as a model for proxy distribution since they can closely
approximate the training distribution from only a limited number of training samples (Karras et al.,
2020; Ho et al., 2020; Gui et al., 2020). Our experimental results demonstrate that the use of syn-
thetic images improves robust accuracy up to 6.4% and 5.0% in l∞ and l2 threat model, respectively,
on the CIFAR-10 dataset.

Contributions. We make following three key contributions. 1) We investigate the effect of increas-
ing number of training samples (from 1K to 2M) on the performance of adversarial training with
deep neural networks, 2) we provide theoretical insights on how robustness of a classifier on one
distribution transfer to another distribution. In particular, we provide a tight upper bound on the
difference of the robustness of a classifier between the distributions, and 3) by leveraging additional
images sampled from the proxy distributions, we improve robust accuracy up to 6.5% and 5.0% in
l∞ and l2 threat model, respectively, on the CIFAR-10 dataset.

2 RELATED WORK

Adversarial training (Madry et al., 2018; Zhang et al., 2019; Gowal et al., 2020; Wu et al., 2020) still
remains the most effective defense against adversarial examples (Szegedy et al., 2013). However,
earlier works have also shown that adversarial training suffers from a large robust generalization
gap (Schmidt et al., 2018; Raghunathan et al., 2019). We refer the reader to RobustBench (Croce
et al., 2020) for a comparison and overview of state-of-the-art methods.

State-of-the-art generative models are capable of modeling the distribution of current large scale im-
age dataset. In particular, generative adversarial networks (GANs) have excelled at this task (Good-
fellow et al., 2014; Karras et al., 2020; Gui et al., 2020). Though GANs generate images with
high fidelity, they lack high diversity (Ravuri & Vinyals, 2019). However, samples from recently
proposed diffusion process based models achieve both highly diversity and fidelity (Ho et al., 2020).

Recent works have also explored the use of synthetic samples in training deep neural net-
works (Ravuri & Vinyals, 2019; Shmelkov et al., 2018). While these earlier works focuses on
benign training our focus is on adversarial training. Another concurrent work (Rebuffi et al., 2021)
also uses samples from generative models to improve adversarial robustness. While Rebuffi et al.
(2021) broadly focuses on the effect of data augmentation, our goal is understand the effect of differ-
ent proxy distributions. However, similar benefits of using generative model from two independent
works further ascertain the importance of this direction.

3 INTEGRATING PROXY DISTRIBUTION WITH ADVERSARIAL TRAINING

Formulation of adversarial training. The key objective in adversarial training is to minimize the
training loss on adversarial examples obtained with iterative adversarial attacks, such as projected
gradient descent (PGD) (Madry et al., 2018) based attacks, under the following formulation.

min
θ

E
(x,y)∼D

Ladv(θ, x, y,Ω), Ladv(θ, x, y,Ω) = L(θ, PGD(x,Ω), y) (1)

whereD is the training data distribution, Ω is the threat model, and θ represents network parameters.

Understanding generalization of adversarial robustness. We assume access to two distributions,
namely D and D̃ supported on X × Y . Our goal is to understand how robustness achieved on
one distribution generalizes to the other. We first define the average robustness of a classifier on a
distribution followed by the definition of conditional Wasserstein distance, a measure of the distance
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between two labeled distributions. We prove that the difference in average robustness of a classifier
on the two distributions is upper bounded by the conditional Wasserstein distance between them.
Definition 1 (Average Robustness). We define average robustness for a classifier h on a distribution
D according to a distance metric d as follows:

Robd(h,D) = E
(x,y)←D

[ inf
h(x′) 6=y

d(x′, x)]

Definition 2 (Conditional Wasserstein distance). For two labeled distributions D and D̃ supported
on X × Y , we define conditional wasserstein distance according to a distance metric d as follows:

CWDd(D, D̃) = E
(·,y)←D

[
inf

J∈J (D|y,D̃|y)
E

(x,x′)←J
[d(x, x′)]

]
where J (D, D̃) is the set of joint distributions whose marginals are identical to D and D̃.

Theorem 1. Let D and D̃ be two labeled distributions supported on X × Y with identical label
distributions, i.e. ∀y∗ ∈ Y,Pr(x,y)←D[y = y∗] = Pr(x,y)←D̃[y = y∗]. Then for any classifier
h : X → Y

|Robd(h, D̃)− Robd(h,D)| ≤ CWDd(D, D̃).

Theorem 2 (Tightness of Theorem 1). For any distribution D supported on X × Y , any classifier
h, any homogeneous distance d and any ε ≤ Robd(h,D), there is a labeled distribution D̃ such that

Robd(h,D)− Robd(h, D̃) = CWD(D, D̃) = ε.

Due to space constraints, we provide the proof of Theorem 1, 2 in supplementary material.

Using proxy distribution to close the generalization gap. Now we focus on improving robustness
on training distribution (D) with access to only a limited number of training samples. As Theorem 1
suggests, robust training on a close proxy distribution (D̃) also generalize to training distribution
(D). Therefore, to improve robustness on D, we proposed to augment original training set with
samples from D̃. In particular, we use the following adversarial training formulation.

min
θ

E
(x,y)∼D

a ∗ Ladv(θ, x, y,Ω) + E
(x,y)∼D̃

b ∗ Ladv(θ, x, y,Ω) (2)

where, a+ b = 1;Ladv(θ, x, y,Ω) = L(θ, PGD(x,Ω), y)

4 EXPERIMENTAL RESULTS

We experiment with both l∞ and l2 threat model on the CIFAR-10 dataset. We use projected gra-
dient descent based adversarial training. Our detailed training setup is provided in the supplemen-
tary material. We work with two state-of-the-art generative models, namely StyleGAN-C (Karras
et al., 2020) and DDPM (Ho et al., 2020). While the former is a generative adversarial network
(GAN), latter is based on the diffusion process. We sample 10M labeled images from the condi-
tional StyleGAN-C and another set of 6M labeled images from the DDPM model1. Both models
generate high fidelity images (example images are provided in supplementary material) but we ob-
serve significantly higher performance when using images from DDPM model in our experiments.

4.1 ADVERSARIAL ROBUSTNESS WITH AN INCREASING NUMBER OF TRAINING SAMPLES

Now we investigate the effect of an increasing number of training samples in adversarial training on
both training distributions and further generalization to other distributions.

Setup. We robustly train a ResNet-18 network on 1k to 2M synthetic images from StyleGAN-C
model trained on CIFAR-10 dataset. To downscale our setup to a manageable computational cost,
we solve the binary classification problem between class-1 (automobile/car) and class-9 (truck).
Additionally, we use the single-step FGSM attack in the adversarial training. We test each network
on a fixed set of 100k images from the StyleGAN-C and the 10k images from the CIFAR-10 test set.

1It is a pre-sampled set of images made available by Nakkiran et al. (2021).
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Figure 1: Generalization of clean and robust accuracy when training on only StyleGAN-C images but
testing on both StyleGAN-C and CIFAR-10 test set. While both clean and robust accuracy improve
consistently on the validation set from StyleGAN-C model, generalization of robust accuracy to
CIFAR-10 is limited, even with increasing number of training samples to the order of millions.

Results. We present our results in Figure 1. We find that the robust accuracy of samples from
the generative model keeps improving consistently. We also observe non-trivial generalization be-
tween the two distributions, as demonstrate by non-trivial clean and robust accuracy achieved on the
CIFAR-10 dataset. In particular, clean accuracy crosses the 90% threshold with only 100k images.
However, generalization of robustness remains harder than accuracy, where it increases much slowly
with number of samples. It motivates us to use a large number of samples from the proxy to benefit
the most in the generalization of robustness.

4.2 ACHIEVING STATE-OF-THE-ART ROBUSTNESS

Now we demonstrate state-of-the-art performance by following the improved adversarial training
formulation from Equation 2. We present our results in Table 1.

State of the art robust accuracy. We observe that incorporating samples from the DDPM model
improves robust accuracy significantly. In l∞ threat model, it improves it to 59.5%, an improvement
up to 6.4% over previous work. Similarly, we observe improvement up to 5.0% for l2 attacks. Note
that clean accuracy also improves simultaneously.

Proxy distribution offsets increase in network parameters. Note that gains from the generative
model are equivalent to ones obtained by scaling network size by an order. For example, a ResNet-
18 network with synthetic data achieves higher robust accuracy (l∞) than a WRN-34-20 trained
without it, while having 16× fewer parameters than the latter. Similarly trend holds for WRN-34-
10 networks, when compared with a much larger WRN-70-16 network.

Method Architecture Parameters (M) Clean Auto

Zhang et al. (2019) ResNet-18 11.2 82.0 48.7
Madry et al. (2018) ResNet-50 23.5 87.0 49.0
Zhang et al. (2019) WRN-34-10 46.2 84.9 53.1
Rice et al. (2020) WRN-34-20 184.5 85.3 53.4

Gowal et al. (2020) WRN-70-16 266.8 85.3 57.2

Ours ResNet-18 11.2 84.0 54.3
Ours WRN-34-10 46.2 86.1 59.5

(a) `∞

Method Architecture Parameters (M) Clean Auto

Rice et al. (2020) ResNet-18 11.2 88.7 67.7
Madry et al. (2018) ResNet-50 23.5 90.8 69.2

Wu et al. (2020) WRN-34-10 46.2 88.5 73.7
Gowal et al. (2020) WRN-70-16 266.8 90.9 74.5

Ours ResNet-18 11.2 89.2 72.7
Ours WRN-34-10 46.2 90.0 76.0

(b) `2

Table 1: Experimental results on the CIFAR-10 dataset where our adversarial training formulation
brings a large gain in adversarial robustness.

5 CONCLUSION

In this work, we focus on the use of proxy distributions in adversarial training. We model the proxy
distribution using state-of-the-art generative models. Using samples from these models, we show
that with an increasing number of training samples, adversarial training can continue to improve
the robustness of deep neural networks. Next, we prove the relationship between the robustness
achieved on the proxy distribution and its transfer to the underlying distribution of the training set.
Finally, we use these insights to improve the performance of adversarial training significantly.
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