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ABSTRACT

There is an emerging trend of exploring adversarial attacks against automatic
speech recognition (ASR) systems. Existing defense techniques largely adopt
methods in the image processing domain without considering the domain-specific
characteristics of audio signals. Hence, they have various limitations against
advanced attacks. In this paper, we study the characteristics of (adversarial) audio
signals in the frequency domain and identify that existing techniques heavily rely on
high frequency perturbation that is not perceptible by humans. We hence leverage
recursive filters that are widely used in the signal processing to filter high frequency
signal. To harden possible future attack on the low frequency, we further introduce
randomness in our recursive filter such that it becomes extremely difficult to evade.
Our experiments show that our technique FIRM can effectively detect adversarial
attacks with AUC scores greater than 0.96 on five different attack scenarios and two
ASR systems. It is also resilient to adaptive attacks. In contrast, a state-of-the-art
approach can only achieve an AUC score of 0.58 on some advanced attacks.

1 INTRODUCTION

Recent deep neural networks (DNNs) based automatic speech recognition (ASR) systems, such
as DeepSpeech (Hannun et al., 2014) and Lingvo (Shen et al., 2019), have achieved state-of-the-
art performance on speech-to-text tasks. Just like image classification models are vulnerable to
adversarial attacks, DNN-based ASRs are also subject to attacks by adversarial audios. Recently, Qin
et al. (2019) constructed human-imperceptible adversarial audios that lead to a target transcription
chosen by the attacker. This raises the security concerns regarding commercial ASR systems such as
Google Home and Amazon Alexa whose core architectures are based on DNNs.

Most existing defense techniques utilize similar methods as those in the image processing domain
without considering domain specific characteristics of audio signals. For instance, Zeng et al. (2019)
leveraged the outputs of multiple ASRs to detect adversarial audios. It has been shown (in the
image processing domain) that defense using multiple models is susceptible to adaptive attacks,
which are aware of defense techniques (He et al., 2017). The techniques in (Rajaratnam & Kalita,
2018; Das et al., 2018) employed compression methods, e.g., MP3 compression. However, these
techniques may not be effective (under adaptive attacks), as shown by Athalye et al. (2018). Yang
et al. (2019) observed that an adversarial audio often contains substantial dependency within the
entire signal such that breaking part of the dependency yields very different transcription. Hence, they
proposed to remove the later half of a given audio signal and compare the resulted transcription of the
remaining half to the first half of the transcription generated from the whole input signal. Substantial
differences indicate attacks. Their results show that the technique is highly effective and represents
the state-of-the-art. However, as shown later in Section 4, the assumption that adversarial signals
have prevalent dependence may not hold in general.

In speech recognition, a raw audio signal is first transformed to frequency spectrum, which is then
passed to the DNN of an ASR systems to generate transcription. That is, the actual input to ASR’s
DNN models is in the frequency domain. It is hence more productive to study the characteristics of
audio signals in the frequency domain instead of in the raw time domain, in order to develop effective
defense techniques. We observe that existing adversarial attacks rely on injecting high-frequency
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noise, which is not human perceptible. We hence propose to leverage the widely used recursive filters
(RFs) that are designed for low-pass filtering. While existing attacks heavily rely on perturbation in
the high frequency, we further show that adaptive attacks that are aware of the existence of recursive
filters can succeed by perturbing the low frequency. To harden low frequency signals, we introduce
randomness into RF, where the coefficients of RF are re-sampled from some distribution on the fly
after every short time period. As such, the randomized RF processes the input signal in potentially
infinite number of ways that are unknown beforehand. Our technique FIRM (recursive FIlters with
RandoMization) is comprised of two parallel processing paths: (1) the input audio waveform is
directly fed to the ASR; (2) the same audio first goes through a randomized RF before being passed
to the ASR. The two transcribed sentences are contrasted using the word error rate (WER). Input
audio with a large WER is considered adversarial. In summary, we make the following contributions.

• We propose to detect adversarial audios utilizing their characteristics in the frequency
domain.
• We incorporate randomness in a recursive filter for defending against potential adaptive

attacks that are aware of our defense.
• Our technique FIRM can successfully detect four different adversarial attacks with AUC

scores greater than 0.96, whereas a state-of-the-art approach (Yang et al., 2019) is only
effective on some of the attacks and ineffective on advanced attacks with an AUC score
of 0.58. In addition, FIRM is resilient to adaptive attacks with negligible performance
degradation.

2 BACKGROUND

Frequency Domain of ASR. Unlike image recognition systems where image pixels are directly
used for prediction, audio utterances are first transformed from the time domain to the frequency
domain. The process involves dividing the input utterance into overlapping frames with a fixed
time span (e.g., 25 ms each frame with 15 ms overlap). Each frame then goes through an N-point
Fast Fourier-Transformation (FFT) to obtain the frequency spectrum. This is called the Short-Time
Fourier-Transformation (STFT). Due to the non-linearity of human ear’s perception of sound, Mel-
Frequency Cepstrum (MFC) transformation is applied to make features more discriminative at lower
frequencies and less discriminative at higher frequencies.

Recursive Filters. In signal processing, digital filters are commonly adopted for separating signals
or recovering distorted signals (Smith et al., 1997). There are two categories of digital filters: non-
recursive and recursive. A non-recursive filter computes output values exclusively from input values.
A recursive filter, on the other hand, utilizes both input values and prior outputs in computation.
Formally, suppose x = (x0, x1, ..., xn) is the input samples and y = (y0, y1, ..., yn) is the corre-
sponding output values generated by a recursive filter at the corresponding sample points, then the
recursive filter leverages the following equation to compute the current output yi:

yi = a0xi + a1xi−1 + a2xi−2 + ...+ aix0

+ b1yi−1 + b2yi−2 + ...+ biy0,
(1)

where a0, a2, ..., ai and b1, b2, ..., bi are the coefficients characterizing the recursive filter.

Adversarial Attacks. It has been shown that a small perturbation on machine learning model input
can lead to model misclassification (Szegedy et al., 2014). Such adversarial attacks are also feasible
for ASR systems.

Specifically, given an input audio waveform x, by adding an intentionally crafted small perturbation
δ, the adversary can cause the ASR system to produce a wrong transcription f(x+ δ) 6= f(x). In
the audio domain, untargeted adversarial attacks are usually less interesting than targeted attacks as
pointed out by researchers in (Carlini & Wagner, 2018; Qin et al., 2019). In a targeted attack, a target
transcription y is pre-selected such that a crafted (small) perturbation δ can cause the ASR system to
produce the target transcription.

Unlike attacks in the computer vision domain that are relatively well studied, attacks on ASRs
are only explored very recently. There has not been a standard metric for measuring perturbation.
In (Carlini & Wagner, 2018), researchers adapted the l∞ metric from the image processing domain
to bound the magnitude of audio perturbation. However, as reported in (Schönherr et al., 2019),
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audio perturbation with small l∞ is perceptible to humans. In order to make adversarial perturbation
stealthy, psychoacoustic models are leveraged (Schönherr et al., 2019; Qin et al., 2019). The idea of
using psychoacoustic models is that a loud signal can mask other signals at nearby frequencies (Bosi
& Goldberg, 2002). Other metrics are also explored by researchers (Liu et al., 2019). Our proposed
approach can detect adversarial attacks regardless of these measurement metrics used in adversarial
audio generation.

3 METHOD

 and you know it

 he she had taught him that

Input audio
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filter ASR system

WER
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spectrogramDistribution Transcription 
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Figure 1: Architecture of FIRM.

Adversarial attacks modify natural audio sig-
nals by applying small perturbation. Existing
attacks use either lp norm or psychoacoustic
model to construct adversarial audio. According
to our study of adversarial audios in the fre-
quency domain in Appendix B, the introduced
perturbation by lp norm based attacks almost
evenly distributes over the entire frequency and
time scope, which is similar to ambient noise.
As such, recursive filters constitute effective counter-measure by their nature. The perturbation by
psychoacoustic model has substantial presence in the high frequency. Recursive filters have the
nice ability of “flattening” high frequency signals. Hence, the (malicious) features encoded by the
perturbation can be largely corrupted.

We devise an adversarial audio detection technique FIRM based on recursive filters. Its workflow is
illustrated in Figure 1. It consists of two simultaneous process paths. The path on top is the standard
prediction procedure of an ASR system. Given an input audio waveform, it is first transformed to the
frequency domain. The resulted signal spectrogram is subsequently fed to the ASR system. Finally
the corresponding transcription is produced by the ASR. The path on the bottom differs from the one
on top at signal pre-processing. The input audio waveform passes through a recursive filter before
being transformed to signal spectrogram. FIRM compares the transcribed sentences from both paths
using the word error rate (WER) metric. If an input audio exhibits a large WER between the two
result transcriptions, it is considered adversarial.

Although existing audio attacks rely on high frequency signal, rendering recursive filters an effective
defense method, future attacks may focus on low frequency signal. We will show in Appendix D
that an adaptive attack that is aware of the presence of our defense, particularly its coefficients, can
successfully evade the defense. Therefore, to provide protection for low frequency signal, we leverage
the observation that natural audio signal is not sensitive to various RF settings while adversarial
signal is (see Appendix C). That is, different RF settings (coefficients) yield similar transcription for
natural audio signal but diverse transcription for adversarial signal as the latter tends to be much less
robust due to its stealthiness requirement, namely, the perturbation has to be small.

The constitution of RF allows natural integration of randomization. Specifically, when computing
each output signal value, a set of coefficients is sampled from some distribution as follows.

yi = c0xi + c1xi−1 + c2xi−2 + ...+ cbk/2cxi−bk/2c

+ cbk/2c+1yi−1 + cbk/2c+2yi−2 + ...+ ck−1yi−bk/2c,
(2)

where
∑k−1

i=0 ci = 1, ci ∼ D. Coefficients c0, c1, ..., ck−1 are sampled from a distribution D and
normalized with the sum of 1. Theoretically, D can be any distribution. The results of employing
different distributions are discussed in Appendix F. Unless otherwise stated, we use the uniform
distribution U(0, 1) and window size k = 5 as the default setting.

Note that the randomization in FIRM is by its nature different from the random local noise in (Carlini
& Wagner, 2018), which has shown that such noise is not effective in improving the robustness of
ASR systems. Specifically, our randomization has global effect through the recursive filter.

4 EVALUATION

The evaluation is conducted on two end-to-end trained automatic speech recognition (ASR) systems
and four state-of-the-art adversarial attack methods. In addition to exiting known attacks, strong
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Table 1: Evaluation of detecting adversarial audios for different approaches. TD is the state-of-the-art
detection approach proposed by Yang et al. (2019). RF denotes vanilla recursive filter. FIRM repre-
sents randomized RF. WS (Liu et al., 2019), CW (Carlini & Wagner, 2018) and PsyImp/PsyRob (Qin
et al., 2019) are different adversarial attacks. TP and FP denote true positive rate and false positive
rate respectively. TH represents the threshold of WER for determining TP and FP. AUC is the area
under the ROC curve.

Detector

DeepSpeech Lingvo

WS CW CW PsyImp PsyRob

TH TP/FP (%) AUC TH TP/FP (%) AUC TH TP/FP (%) AUC TH TP/FP (%) AUC TH TP/FP (%) AUC

TD 0.74 90.91/0.00 0.9959 0.80 60.90/20.00 0.6974 0.59 98.80/2.01 0.9881 0.59 98.73/1.80 0.9885 0.29 34.90/9.78 0.5778
RF 0.90 100.00/0.00 1.0000 0.79 98.10/ 5.00 0.9906 0.69 100.00/0.00 1.0000 0.69 100.00/0.00 1.0000 0.16 79.39/9.65 0.8785
FIRM 0.90 100.00/0.00 1.0000 0.93 95.30/ 5.70 0.9724 0.90 99.90/0.00 1.0000 0.90 99.89/0.00 1.0000 0.64 87.10/5.69 0.9650

adaptive attacks are performed on the detection mechanism to evaluate the robustness of defensive
approaches. We also empirically compare FIRM with the state-of-the-art defense (Yang et al., 2019).
Experimental results are discussed in the following. Please see Appendix E for detailed setup.

4.1 DETECTION OF ADVERSARIAL AUDIOS

Detection of Existing Attacks. The experimental results on existing attacks are shown in Table 1
(see ROC curves in Figure 5 in Appendix). We can observe that RF (using a vanilla recursive filter)
and FIRM (using a randomized RF) consistently outperform the state-of-the-art defense technique
TD (Yang et al., 2019). Particularly, TD performs the worst on the PsyRob attack, which is an
advanced attack that leverages psychoacoustic model in the frequency domain. The detection AUC
value of TD on DeepSpeech model reported in (Yang et al., 2019) is 0.936, which is much higher
than that in our experiment. The reason is that Yang et al. (2019) only generated 50 adversarial
samples with 3 target transcriptions, whereas we generate 1,000 adversarial audios with 10 target
transcriptions. FIRM has similar performance with RF on all the attack scenarios except PsyRob.
The PsyRob attack constructs more robust adversarial audios by utilizing room simulation. Vanilla
RFs have pre-defined coefficients and mostly serve as a low-pass filter (with little protection on low
frequency). FIRM, on the other hand, introduces randomness and hence provides protection on low
frequency as well as high frequency. Also observe from the FP columns that FIRM has reasonable
FPs, consistently better than TD. The TH column denotes the WER threshold used to determine
adversarial audios. Similar to existing techniques (Xu et al., 2018), a threshold is selected for each
attack scenario with the goal of minimizing false positives such that the normal functionalities of
ASRs are not affected. WER is defined as S+D+I

N , where S, D, I are the numbers of substitutions,
deletions and insertions between a subject sentence and a reference sentence, and N is the total
number of words in the reference sentence. A large WER indicates substantial difference. Observe
that FIRM uses the largest WER among all three methods, indicating adversarial audios become quite
different after processed by randomized RF as shown in Table 3 in Appendix.

Table 2: Evaluation of detecting adaptive adversar-
ial attacks.

Detector
DeepSpeech Lingvo

CW CW PsyImp

TH TP/FP AUC TH TP/FP AUC TH TP/FP AUC

RF 0.63 25/10 0.622 0.13 70/5 0.711 0.13 75/5 0.761
FIRM 0.88 94/ 8 0.963 0.88 100/0 1.000 0.88 99/0 1.000

Detection of Adaptive Attacks. The results of
adaptive attacks on vanilla RFs and FIRM are
presented in Table 2. It can be observed that
the AUC score of RF drops from 0.99-1.00 to
0.62-0.76. It demonstrates that in the adaptive
settings, a vanilla RF can be evaded. FIRM, on
the other hand, still has a high detection rate
with an AUC score larger than 0.96.

5 CONCLUSION

We study the characteristics of audio signals in the frequency domain. We propose to use recursive
filters and incorporate randomness to detect adversarial attacks. Our proposed approach FIRM can
effectively detect attacks with AUC scores greater than 0.96 on five different attack scenarios and is
resilient to adaptive attacks. FIRM outperforms the state-of-the-art defense technique.
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APPENDIX

A RELATED WORK

In (Gong & Poellabauer, 2017; Cisse et al., 2017), researchers constructed untargeted adversarial
audios that can cause incorrect outputs of ASRs. In (Carlini et al., 2016; Zhang et al., 2017; Song
& Mittal, 2017), techniques were proposed to synthesize completely new audio to attack ASRs.
In (Schönherr et al., 2019), researchers attacked a traditional ASR system called Kaldi, which is
not trained end-to-end as DeepSpeech or Lingvo. Recent adversarial attacks proposed by Carlini &
Wagner (2018); Liu et al. (2019); Qin et al. (2019) were conducted on state-of-the-art end-to-end
trained systems. These attacks aim to generate adversarial audio that can make ASRs produce a
target transcription by adding small perturbation to the original audio. To mitigate such attacks,
Zeng et al. (2019) proposed to use output transcription from multiple ASRs; Rajaratnam & Kalita
(2018) added simple noise with pre-defined frequency to audios for attack detection; Rajaratnam
et al. (2018); Das et al. (2018) leveraged compression methods such as MP3 compression. While
these techniques are effective for some attacks, they are less effective in other (more sophisticated)
attacks. A state-of-the-art approach (Yang et al., 2019) utilized the observation that adversarial audio
tends to have strong dependence across different parts such that removing a part causes substantial
transcription difference. We use the approach as our baseline and show that it fails on a set of
advanced attacks in Section 4.

(a) Original audio signal power spectrum. (b) The power spectrum of original audio passed
through a randomized recursive filter.

(c) l∞ based adversarial audio signal power spec-
trum.

(d) The power spectrum of the difference of original
and l∞ based adversarial audios.

(e) Psychoacoustic based adversarial audio signal
power spectrum.

(f) The power spectrum of the difference of original
and psychoacoustic based adversarial audios.

(g) The power spectrum of l∞ based adversarial au-
dio passed through a randomized recursive filter.

(h) The power spectrum of psychoacoustic based
adversarial audio passed through a randomized recur-
sive filter.

Figure 2: Power spectra of input audio signals. Colors are used to denote the magnitude of signal at a
specific frequency and a time point (as indicated by the color bar on the right-hand side).
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B FREQUENCY ANALYSIS OF ADVERSARIAL AUDIOS

Adversarial attacks modify natural audio signals by applying small perturbation. Existing attacks
use either lp norm or psychoacoustic model to construct adversarial audio. The human perception of
perturbation introduced by the lp norm based adversarial attacks is similar to that of ambient noise.
Figure 2 shows a set of power spectra of audio signals. The x axis of a power spectrum denotes
the time; the y axis the frequency. The color of a point at (x, y) denotes the signal magnitude at the
given timestamp and frequency. Note that the relation between color and magnitude is shown on the
right as a color bar, with red denoting strong signal and blue weak signal. Figure 2d demonstrates
the difference between an l∞ based adversarial audio (Figure 2c) and the original audio (Figure 2a).
Observe that the introduced perturbation almost evenly distributes over the entire frequency and time
scope and hence resembles ambient noise. As such, recursive filters constitute effective counter-
measure by their nature. Adversarial attacks that use psychoacoustic modeling aim to disguise
perturbation in the original strong signal in the frequency domain, regardless of the frequency of
the signal. For example, the injected signal using psychoacoustic modeling in Figure 2f has a shape
similar to the original signal Figure 2a. Observe that the perturbation has substantial presence in the
high frequency. Recursive filters have the nice ability of “flattening” high frequency signals. Hence,
the (malicious) features encoded by the perturbation can be largely corrupted. Observe in Figure 2b,
Figure 2g and Figure 2h that denote signals after filtering, high-frequency signals are flattened with
indistinguishable differences, whereas low-frequency signals are mostly retained.

C EXAMPLE TO DEMONSTRATE THE EFFECT OF RANDOMIZED RF

We feed a natural input audio that has gone through our randomized RF into the ASR to obtain the
transcribed sentence. We then compare the transcription to that without the filter. We also perform
the same experiment for signals generated by the attacks in (Carlini & Wagner, 2018) (CW) and (Qin
et al., 2019) (PsyImp). The results are presented in Table 3. To reduce non-determinism caused
by randomization, we ran the ASR with the filter 10 times for each signal and present the most
dominating one. The others have negligible differences (e.g., one word difference).

Observe that for the normal input audio, the difference is negligible (word “less” becomes “left”),
after processed by the filter. Adversarial audios are substantially affected by the filter. Also observe
that the transcribed sentences of filter-processed adversarial audios highly resemble the normal
transcription, suggesting FIRM may allow an ASR to recover from attacks (to some extent).

Table 3: Examples of normal audios (Normal), adversarial audios generated by Carlini & Wagner
(2018) (CW) and by Qin et al. (2019) (PsyImp) transcribed by the ASR. The input audios are passed
through the filter (3) or not (7) before feeding into the ASR.

Input Filter Transcription

Normal

7
the more she is engaged in her proper duties
the less leisure will she have for it even as
an accomplishment and a recreation

3
the more she is engaged in her proper duties
the left leisure will she have for it even as
an accomplishment and a recreation

CW

7
old will is a fine fellow but poor and helpless
since missus rogers had her accident

3
more she is engaged in her proper duties
the last measure will she have her it even as
an accomplishment and a recreation

PsyImp

7
old will is a fine fellow but poor and helpless
since missus rogers had her accident

3
the more human gaits in her proper duties
the left leisure will she have her it even as
an accomplishment and the recreation
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Figure 3: Example of impulse response. The left
figure denotes an impulse signal δ(n). The right
represents the corresponding impulse response
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BRFs.

D ADAPTIVE ATTACKS

Impulse Response. To understand the characteristics of a filter, the impulse response analysis
is commonly leveraged. In this work, impulse response analysis is used in constructing adaptive
adversarial attacks. Given a special input signal called impulse, the impulse response is the output
produced by the filter. It characterizes the behavior of a filter. Formally, an input impulse δ(n), with
n ∈ Z, is defined as follows.

δ(n) =

{
1 n = 0,

0 n 6= 0.
(3)

The impulse response h(n) is the output of a filterH given the impulse δ(n), which is also denoted
as h(n) , H{δ(n)}. To analyze the effect of a filterH on an input sequence x(n), we can represent
the input sequence as a weighted sum of the impulse, i.e.,

x(n) =

∞∑
k=−∞

x(k)δ(n− k), k ∈ Z. (4)

Then the output sequence y(n) can be denoted as

y(n) = H{x(n)} = H
{ ∞∑

k=−∞

x(k)δ(n− k)

}
(5)

=

∞∑
k=−∞

x(k)H{δ(n− k)} (linearity ofH)

=

∞∑
k=−∞

x(k)h(n− k). (time-invariant ofH)

The key is that output y(n) is the convolution of x(n) and h(n), i.e., y(n) = x(n) ∗ h(n) =∑∞
k=−∞ x(k)h(n− k). We use the following simple example to demonstrate the impulse response

of a recursive filter.

Example. Suppose we have a recursive filterH with unknown behaviors and we want to identify its
output function y(n) given an input sequence x(n). Through impulse response analysis, we obtain the
response function h(n) = ( 1

3 )bn/2c+1 for n ≥ 0 and h(n) = 0 for n < 0. Applying the convolution
sum in Equation 5 yields y(n) =

∑n
k=−∞( 1

3 )bk/2c+1x(n − k) for n ≥ 0, which is simplified to
y(n) = 1

3x(n) + 1
3x(n− 1) + 1

3y(n− 2). Figure 3 shows the impulse response of the filter.

Adaptive Attack Construction. Existing adversarial attacks are conducted on the original ASR
systems without any defense mechanism. It is more interesting to investigate how attackers adapt
to bypass known defense/detection approaches. We analyze how a vanilla recursive filter and a
randomized RF are constructed so as to design more powerful attack methods.

9
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Recall that recursive filters leverage long-term history to compute the current signal value as discussed
earlier. We use the same example to illustrate how to construct attack on recursive filters defended
ASRs. Suppose we have a recursive filter as follows.

y(n) =
1

3
x(n) +

1

3
x(n− 1) +

1

3
y(n− 2), (6)

where x(n) is the input signal at time step n and y(n) is the output signal. Due to the recursive nature
of the filter, Equation 6 can be written in an explicit form by (recursively) expanding the output term
y(n− 2) on the right-hand side.

y(n) =
1

3
x(n) +

n−1∑
k=0

(
1

3
)n−kx(k). (7)

With the above explicit form, each output signal can be directly computed using all the previous
input signal. The coefficient associated with each input signal is ( 1

3 )n−k. It is straightforward to
obtain all the coefficients beforehand, which constructs an input-output coefficient matrix with the
size of O(n2). For a 10-second long audio waveform, it comprises 146800 input signals. That
is, there are at least 1

2 · 1468002 ≈ 1.08 × 1010 nonzero entries in the coefficient matrix. The
computation for one pass (of filtering) is limited. When applying gradient-based attacks, Expectation
over Transformation (Athalye et al., 2018) is commonly utilized for optimization. The computation,
however, will be extremely expensive, as each forward (prediction) pass and each backward (gradient
calculation) pass require the multiplication of the coefficient matrix and the input signal. To reduce
the computation cost introduced by the large matrix multiplication, we resort to leveraging the
exponentially decreasing property of recursive filters. As shown in Figure 3, the impulse response
of the example recursive filter has large values around the origin and decreases exponentially with
the increase of x-axis value. That is, the impact of previous long-term signals is limited/negligible.
More specifically, input signal values are integers ranging from −215 to 215 − 1. Assume η =

∑
t at

(where at > 0) is the sum of all the remaining coefficients associated with the previous long-term
signals, then η × (215 − 1) < 1 can hence be disregarded. This characteristic of recursive filters
offers the opportunity to utilize a more local filter for cost-efficient computation. We substitute the
recursive filter in Equation 6 with a local filter with coefficients calculated using Equation 7 but not
in η, i.e.,

y(n) =

20∑
k=0

(
1

3
)bk/2c+1 · x(n− k) (8)

In Section 4, we demonstrate that with this equivalent substitution, regular recursive filters can be
bypassed under adaptive settings.

Regarding our proposed randomized RF (defined in Equation 2), the coefficients associated with each
input signal are sampled from some distribution. That is, there does not exist an explicit form as
Equation 7 for these filters. All the calculation between input signals and output signals have to be
conducted recursively, which introduces extremely high computation cost for gradient-based adaptive
attacks. We hence leverage an analytic procedure. We sample 1,000 randomized RFs and conduct
the impulse response analysis on these filters. The results are visualized in Figure 4. Observe that
most impulse response values concentrate on the left part of the figure (x-axis less than 20). This
showcases that there are only a limited number of input samples which have noticeable influence on
the output values. Based on this observation, we approximate a randomized RF using a local filter
with a finite number of coefficients as is done for vanilla filters. The results of adaptive attacks on
these filters are represented in Section 4. The results show that randomized RFs cannot be evaded
due to its random nature. Here, we use an approximate approach to performing the attack due to the
extremely high computation cost. There is a possibility that our proposed approach can be evaded if
the recursive filters and the introduced randomness can be better modeled. We plan to further explore
this in future work.

E EXPERIMENT SETUP

Two well-known ASR systems, two widely used speech-to-text datasets, and four state-of-the-art
adversarial attacks are used for evaluating the effectiveness of different detection approaches.
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Table 4: Statistics of attacks (WS (Liu et al., 2019), CW (Carlini & Wagner, 2018) and Psy-
Imp/PsyRob (Qin et al., 2019)) on two ASR systems (DeepSpeech and Lingvo). Succ. denotes the
attack success rate. WER is the word error rate of feeding adversarial audios to ASRs. Time shows
the efficiency of different attacks (measured with GPU usage).

Metric
DeepSpeech Lingvo

WS CW CW PsyImp PsyRob

Succ. (%) 100.00 100.00 99.60 94.70 33.49
WER (%) 0.00 0.00 0.30 2.49 65.52
Time*(d) -† 10×4 14×4 14×4 9×4

* The attack generation time was calculated based on #days × #GPUs.
† Adversarial audios generated by WS were downloaded from the original paper’s website.

ASR Systems. We use two ASR systems, DeepSpeech (Hannun et al., 2014) and Lingvo (Shen et al.,
2019). DeepSpeech is an open source speech-to-text engine implemented by Mozilla (Mozilla, 2017)
based on the model proposed in (Hannun et al., 2014). Lingvo is a sequence-to-sequence model with
attention based on the Listen, Attend and Spell model (Shen et al., 2019).

Datasets. Two datasets are employed: Mozilla Common Voice and LibriSpeech (Panayotov et al.,
2015). The former is a large open source dataset containing thousands of hours of recorded audios.
We use the same input set in (Carlini & Wagner, 2018) consisting of 100 audios. For each audio a,
we randomly choose 10 transcriptions from the produced transcriptions of the other 99 audios as
the target transcription. In other words, we use the attack methods to generate 10 adversarial audios
from a, each causing the ASRs to produce the 10 respective target transcriptions. This is the same
attack setting used in (Carlini & Wagner, 2018). LibriSpeech is a corpus with thousands of hours of
English speech. We follow the convention and randomly select 1000 samples as the source audios,
and then randomly select 1000 transcriptions different from the ones of the source audios as the target
transcriptions. Each target transcription has similar length as the original transcription.

Adversarial Attacks. Four different adversarial attacks are considered in the evaluation. The first
attack (CW) is the l∞ attack in (Carlini & Wagner, 2018). It was originally applied to DeepSpeech
using the CTC loss. We additionally perform the attack on Lingvo. We also use the weighted-sampling
(WS) attack in (Liu et al., 2019) that enhances CW in efficiency and robustness by focusing on specific
parts of distortion with adjusted weights. The third attack (Qin et al., 2019) leverages psychoacoustic
modeling to generate human-imperceptible adversarial audios (PsyImp). The fourth is its extension
that constructs robust over-the-air adversarial audios (PsyRob). Table 4 presents the statistics of
the four attacks. For the WS attack, since there is no available implementation, we downloaded the
generated adversarial audios published online1 by the authors. For CW and PsyImp, we use the same
setting as in the original papers (Carlini & Wagner, 2018; Qin et al., 2019), which consists of 1,000
adversarial audios for each attack. For the PsyRob attack, we randomly choose 200 audio samples
from the LibriSpeech dataset for evaluation, which is twice the size in the original setting (Qin et al.,
2019). The generated adversarial audios are tested under 100 random room configurations, which
comprises 20,000 test combinations. As we use a larger set of audio samples to perform the attack,
the attack success rate is slightly lower than that reported in the original paper (Qin et al., 2019) but
still reasonable. Most these attacks take days or weeks to generate all the adversarial audios as shown
in Table 4. Other than existing adversarial attacks, we further perform adaptive attacks. We make
CW and PsyImp attacks adaptive as they have high attack success rates. We randomly select 100
audio samples to perform these attacks.

F DESIGN CHOICES

Various distributions can be used to generate the randomized RFs in FIRM. We study three well-
known distributions, namely, gamma distribution, normal distribution, and uniform distribution, as
well as the mixture of these three. We use fixed parameters for these distribution: Gamma Γ(1, 1),
Normal N (0, 1)2, and Uniform U(0, 1). The mixture utilizes a discrete uniform distribution with

1https://sites.google.com/view/audio-adversarial-examples/
2The folded normal distribution is in fact used as coefficients are designed with positive values.
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three values, where each value represents one of the above three distributions. For each output
signal yi, a distribution is selected to sample the coefficients. In the design of FIRM, a fixed window
size is employed for the output signal computation. We also study how different window sizes
affect the performance. Table 5 demonstrates the AUC scores of FIRM with various configurations.
Interestingly, almost all the configurations have AUC scores more than 0.9 under various attack
scenarios. FIRM with a larger window size tends to have lower scores. We believe that a larger
window size creates dependence between the current signal and a distant past, which leads to unstable
output. Different distributions have indistinguishable effect on the detection performance.

Table 5: Detection performance (AUC score) of FIRM with different configurations.

Dist. Size
DeepSpeech Lingvo

WS CW CW PsyImp PsyRob

G
am

m
a

3 0.9917 0.9821 1.0000 1.0000 0.9574
5 0.9917 0.9402 0.9999 0.9999 0.9767
7 0.9917 0.9126 0.9996 0.9995 0.9656
9 0.9917 0.8711 0.9986 0.9985 0.9391

11 0.9917 0.8254 0.9970 0.9967 0.8913

N
or

m
al

3 1.0000 0.9874 1.0000 1.0000 0.9393
5 0.9917 0.9607 1.0000 1.0000 0.9762
7 0.9917 0.9234 0.9999 0.9998 0.9759
9 0.9917 0.8942 0.9990 0.9990 0.9561

11 0.9835 0.8674 0.9983 0.9981 0.9252

U
ni

fo
rm

3 1.0000 0.9914 1.0000 1.0000 0.9215
5 1.0000 0.9724 1.0000 1.0000 0.9650
7 0.9917 0.9463 1.0000 1.0000 0.9795
9 0.9917 0.9151 0.9997 0.9997 0.9656

11 0.9917 0.8931 0.9989 0.9988 0.9466

M
ix

tu
re

3 1.0000 0.9870 1.0000 1.0000 0.9450
5 0.9917 0.9587 0.9999 0.9999 0.9748
7 0.9917 0.9300 0.9999 0.9998 0.9730
9 0.9917 0.8951 0.9987 0.9987 0.9541

11 0.9917 0.8603 0.9976 0.9974 0.9228
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(a) Detecting CW attack on DeepSpeech
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(b) Detecting PsyRob attack on Lingvo

Figure 5: The ROC curves for different detection approaches
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