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ABSTRACT

Starting with Gilmer et al. (2018), a line of theoretical works have focused on study-
ing the concentration of measure phenomenon which is fundamentally connected to
adversarial robustness. In this work, we argue that the standard concentration is not
sufficient to characterize the intrinsic robustness limit for an adversarially robust
classification problem since it does not take data labels into account. Built upon
on a novel definition of label uncertainty, we empirically demonstrate that error
regions induced by various state-of-the-art classification models tend to have much
higher label uncertainty than randomly selected subsets. This observation implies
that in order to obtain a more accurate intrinsic robustness limit for a particular data
distribution, it is important to understand the concentration of measure regarding
the input regions with high label uncertainty. In this paper, we adapt the standard
concentration problem to produce a more accurate estimate of intrinsic robustness
that incorporates label uncertainty and study the error region characteristics of the
state-of-the-art machine learning classifiers.

1 INTRODUCTION

Since the initial reports of adversarial examples against DNNs (Szegedy et al., 2014; Goodfellow et al.,
2015), many defensive mechanisms have been proposed aiming to enhance the robustness of machine
learning classifiers, but most have failed against stronger adaptive attacks (Athalye et al., 2018;
Tramer et al., 2020). PGD-based adversarial training (Mądry et al., 2018) and its variants (Zhang
et al., 2019; Carmon et al., 2019) are among the few heuristic defenses that have not been broken so
far, but these methods still fail to produce satisfactorily robust classifiers, even for classification tasks
on benchmark datasets like CIFAR-10. Motivated by the empirical hardness of adversarially-robust
learning, a line of theoretical works (Gilmer et al., 2018; Fawzi et al., 2018; Mahloujifar et al., 2019a;
Shafahi et al., 2019) have argued that adversarial examples are unavoidable. In particular, these works
proved that as long as the input distributions are concentrated with respect to the perturbation metric,
adversarially robust classifiers do not exist. Recently, Mahloujifar et al. (2019b) and Prescott et al.
(2021) generalized these results by developing empirical methods for measuring the concentration
of arbitrary input distribution that can be further translated into an intrinsic robustness limit. (See
Appendix A for a more complete discussion of related work.)

In this work, we argue that the standard concentration of measure problem, which was studied in all
of the aforementioned theoretical works, is not sufficient to capture a realistic intrinsic robustness
limit for an adversarially robust classification problem. In particular, the standard concentration
function is defined as an inherent property regarding the input metric probability space, which does
not take account of the underlying label information. However, such label information is an essential
component for any supervised learning problem, including adversarially robust classification.

Contributions. We identify the insufficiency of the standard concentration of measure problem
and provide explanations on why it fails to capture a realistic intrinsic robustness limit (Section 2).
Then, we introduce the notion of label uncertainty (Definition 3.1), which characterizes the average
uncertainty level of the underlying label assignments for an input region. Built upon this definition,
we propose to incorporate label uncertainty in the standard concentration measure as an initial step
towards a more realistic characterization of intrinsic robustness (Section 3). Experiments on the
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CIFAR-10 and CIFAR-10H datasets (Peterson et al., 2019) demonstrate that error regions induced by
a wide range of state-of-the-art classification models all have high label uncertainty, which validates
the proposed label uncertainty constrained concentration problem (Section 4).

2 STANDARD CONCENTRATION IS NOT SUFFICIENT

In this section, we first explain a fundamental connection between the concentration of measure
problem and the intrinsic robustness with respect to imperfect classifiers shown in previous work, and
then argue that standard concentration fails to capture a realistic intrinsic robustness limit because it
ignores the actual data labels. Appendix B provides formal definitions of the adversarial risk, the
intrinsic robustness and the concentration function.

Connecting Intrinsic Robustness with Concentration of Measure. Let (X , µ,∆) be the consid-
ered input metric probability space, Y be the set of possible labels, and c : X → Y be the concept
function that gives each input a label. Given parameters 0 < α < 1 and ε ≥ 0, the standard
concentration problem can be cast into an optimization problem as follows:

minimize
E∈pow(X )

µ(Eε) subject to µ(E) ≥ α. (2.1)

For any classifier f , let Ef = {x ∈ X : f(x) 6= c(x)} be its induced error region with respect to c(·).
By connecting the risk of f with the measure of Ef and the adversarial risk of f with the measure
of the ε-expansion of Ef , Mahloujifar et al. (2019a) proved that the standard concentration problem
(2.1) is equivalent to the following optimization problem regarding risk and adversarial risk:

minimize
f

AdvRiskε(f, c) subject to Risk(f, c) ≥ α.

More specifically, the following lemma characterizes the fundamental connection between the
concentration function and the intrinsic robustness with respect to the set of imperfect classifiers:

Lemma 2.1 (Mahloujifar et al. (2019a)). For any α ∈ (0, 1), let Fα = {f : Risk(f, c) ≥ α} be the
set of imperfect classifiers, then it holds for any ε ≥ 0 that

AdvRobε(Fα, c) = 1− h(µ, α, ε).

Lemma 2.1 suggests that the concentration function of the input metric probability space h(µ, α, ε)
can be translated into an adversarial robustness upper bound that applies to any classifier with risk at
least α. If this upper bound is shown to be small, then one can conclude that it is impossible to learn
an adversarially robust classifier, as long as the learned classifier has risk at least α.

Insufficiency of Standard Concentration. Despite of the appealing relationship between concen-
tration of measure and intrinsic robustness, we argue that solving the standard concentration problem
may not be sufficient to capture a meaningful intrinsic limit for adversarially robust classification.
Recall that the standard concentration of measure problem (2.1) aims to find the optimal subset that
has the smallest ε-expansion with regard to the input metric probability space (X , µ,∆), whereas
the underlying concept function c(·) that determines the underlying class label of each input is not
involved. That said, for the considered metric probability space, no matter how we assign the labels
to the inputs, the concentration function h(µ, α, ε) will remain the same. In sharp contrast, learning
an adversarially-robust classifier relies on the joint distribution of both the inputs and the labels.

Moreover, when the standard concentration function is translated into an upper bound on adversarial
robustness, it is defined with respect to the set of imperfect classfiers Fα (see Lemma 2.1). Note that
the only restriction imposed by Fα is that the risk of the classifier (or equivalently, the measure of the
corresponding error region) is at least α. Note that, unlike adversarially robust learning, this does not
consider whether the classifier is learnable. Thus, it is very likely that the optimal classifier implied
by the standard concentration function cannot be produced by any supervised learning method. That
said, suppose Flearn denotes the set of learnable classifiers, then AdvRobε(Fα, c) could be much
higher than AdvRobε(Flearn, c). In fact, it has been observed in Mahloujifar et al. (2019b) that the
intrinsic robustness limit implied by concentration of measure is much higher than the adversarial
robustness attained by state-of-the-art robust training methods on several image benchmarks.
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3 INCORPORATING LABEL UNCERTAINTY IN INTRINSIC ROBUSTNESS

In this section, we introduce our definition of label uncertainty and how to include it in the intrinsic
robustness measures. Let (X , µ) be the input probability space and Y = {1, 2, . . . , k} denote the
complete set of labels. A function η : X → [0, 1]k is said to capture the full label distribution (Geng,
2016; Gao et al., 2017), if [η(x)]y corresponds to the description degree of y to x for any x ∈ X
and y ∈ Y , and

∑k
y=1[η(x)]y = 1 holds for any x ∈ X . For classification tasks that rely on human

labeling, one can approximate the label distribution with respect to any input by collecting human
labels from multiple human annotators (Peterson et al., 2019).

For any subset E ∈ pow(X ), we introduce the notion of label uncertainty to capture the average
uncertainty level with respect to the label assignments of the inputs within E :
Definition 3.1 (Label Uncertainty). Let (X , µ) be the input probability space and Y = {1, 2, . . . , k}
be the complete set of class labels. Suppose c : X → Y is a concept function that assigns each input
x a label y ∈ Y . Assume η : X → [0, 1]k is the underlying label distribution function, where [η(x)]y
represents the description degree of y to x. For any subset E ∈ pow(X ) with measure µ(E) > 0, the
label uncertainty of E with respect to (X , µ), c(·) and η(·) is defined as:

LU(E ;µ, c, η) =
1

µ(E)

∫
E

{
1−

[
η(x)

]
c(x)

+ max
y′ 6=c(x)

[
η(x)

]
y′

}
dµ.

The range of label uncertainty is [0, 2]. We define LU(E ;µ, c, η) as the average label uncertainty for
all the examples that fall into E , where 1 − [η(x)]c(x) + maxy′ 6=c(x)[η(x)]y′ represents the label
uncertainty of a single example {x, c(x)}. For a single input, label uncertainty of 0 suggests the
assigned label fully captures the underlying label distribution, label uncertainty of 1 means there are
other classes as likely to be the ground-truth label as the assigned label, and label uncertainty of 2
means there is a label other than the assigned one that should be the ground-truth.

State-of-the-art classification models are expected to misclassfy more inputs with large label uncer-
tainty, as there is more discrepancy between their assigned labels and the underlying label distribution
(see Section 4 for empirical evidence on CIFAR-10). Thus, to obtain a more realistic intrinsic
robustness limit, we propose the following label uncertainty constrained concentration problem:

minimize
E∈pow(X )

µ(Eε) subject to µ(E) ≥ α and LU(E ;µ, c, η) ≥ γ, (3.1)

where γ ∈ [0, 2] is a constant that will be determined based on the given classification problem.
Note that when γ is set as zero, (3.1) degenerates to the standard concentration of measure problem.
Similar to the connection between the standard concentration function and AdvRobε(Fα), the
optimal value of (3.1) is equivalent to 1−AdvRobε(Fα,γ), where Fα,γ denotes the set of classifiers
with risk at least α and error region label uncertainty at least γ. As long as a classifier f belongs
to Fα,γ , it is guaranteed that AdvRobε(f) ≤ AdvRobε(Fα,γ) ≤ AdvRobε(Fα). Although both
AdvRobε(Fα) and AdvRobε(Fα,γ) can serve as valid robustness upper bounds, the latter one would
be able to capture a more meaningful intrinsic robustness limit, since it takes account of the fact that
state-of-the-art classification models prone to misclassify inputs with higher label uncertainty.

4 EXPERIMENTAL RESULTS

To illustrate our label uncertainty definition and test the aforementioned hypothesis, we conduct
experiments on the CIFAR-10H dataset (Peterson et al., 2019), which contains soft labels reflecting
human perceptual uncertainty for the 10,000 CIFAR-10 test images. These soft labels can be regarded
as an approximation of the label distribution function η(·) at each given input, whereas the original
CIFAR-10 test dataset provides the class labels given by the concept function c(·).

Figure 1(a) shows the label uncertainty score for several images with both the soft labels from
CIFAR-10H and the original class labels from CIFAR-10. Images with low uncertainty scores are
typically easier for humans to recognize their class category (e.g., the first row of Figure 1(a)),
whereas images with high uncertainty scores look ambiguous or even misleading (e.g., the second and
third rows). Figure 1(b) shows the histogram of the label uncertainty distribution for all the CIFAR-10
test examples. More than 80% examples have label uncertainty score less than 0.1, suggesting their
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(a) Illustration of CIFAR-10 and CIFAR-10H (b) Label Uncertainty Distribution

Figure 1: (a) Visualization of the CIFAR-10 test images with the soft labels from CIFAR-10H,
the original assigned labels from CIFAR-10 and the label uncertainty scores computed based on
Definition 3.1. (b) Histogram of the label uncertainty distribution for the CIFAR-10 test dataset.

(a) Standard Training (b) Adversarial Training (c) RobustBench

Figure 2: Visualizations of error region label uncertainty versus standard risk and adversarial risk
with respect to classifiers produced by different machine learning methods: (a) Standard-trained
classifiers with different network architecture; (b) Adversarially-trained classifiers using different
learning algorithms; (c) State-of-the-art adversarially robust classification models from RobustBench.

original class labels do capture the underlying label distribution well. However, around 2% of the
examples have label uncertainty scores exceeding 0.7.

We hypothesize that ambiguous or misleading images should also be more likely to be misclassified
as errors by state-of-the-art machine learning classifiers, or in other words, their induced error regions
should have larger label uncertainty. In order to test this hypothesis, we conduct experiments on
CIFAR-10 and CIFAR-10H datasets. More specifically, we train different classification models,
including intermediate models extracted at different epochs, using the CIFAR-10 training dataset,
then empirically compute the standard risk, the adversarial risk and the label uncertainty of the
corresponding error region. The results are shown in Figure 2 (see Appendix C for model specifics
and training hyperparameters).

Figures 2(a) and 2(b) demonstrate the relationship between label uncertainty and standard risk for
various classifiers produced by standard training method and adversarial training methods under
`∞ perturbations with ε = 8/255. In addition, we plot the label uncertainty with error bars of
randomly-selected images from the CIFAR-10 test dataset as a reference. As the model classifica-
tion accuracy increases, the label uncertainty of its induced error region increases, suggesting the
misclassified examples tend to have higher label uncertainty. This observation holds consistently
for both standard and adversarially trained models with any tested network architecture. Figure 2(c)
summarize sthe error region label uncertainty with respect to the state-of-the-art adversarially robust
models documented in RobustBench (Croce et al., 2020). Regardless of the perturbation type or the
learning method, the average label uncertainty of their misclassified examples all falls into a range
of (0.17, 0.23), whereas the mean label uncertainty of all the testing CIFAR-10 data is less than 0.1.
This validates our hypothesis that error regions of state-of-the-art classifiers tend to have larger label
uncertainty, and supports the need for accounting for labels in intrinsic robustness.
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A RELATED WORK

A.1 TRAINING ADVERSARIALLY ROBUST CLASSIFIER

Witnessing the vulnerability of modern machine learning models to adversarial examples, exten-
sive studies have been carried out aiming to build classification models that can be robust against
adversarial perturbations. Heuristic defense mechanisms (Goodfellow et al., 2015; Papernot et al.,
2016; Guo et al., 2018; Xie et al., 2018; Mądry et al., 2018) had been most popular until many of
them were broken by stronger adaptive adversaries (Athalye et al., 2018; Tramer et al., 2020). The
only exception, which has not been defeated yet so far, is PGD-based adversarial training (Mądry
et al., 2018). Recent successful methods are variants of PGD-based adversarial training, which either
adopt different loss function (Zhang et al., 2019; Wu et al., 2020) or make use of additional training
data (Carmon et al., 2019; Alayrac et al., 2019). Nevertheless, the best current adversarially trained
classifiers can only achieve around 60% robust accuracy on CIFAR-10 against `∞ perturbations with
strength ε = 8/255, even with additional training data (see the leaderboard in Croce et al. (2020)).

In addition, to end the arms race between heuristic defenses and newly designed adaptive attacks that
break them, certified defenses have been developed based on different approaches, including linear
programming (Wong & Kolter, 2018; Wong et al., 2018), semidefinite programming (Raghunathan
et al., 2018), interval bound propagation (Gowal et al., 2019; Zhang et al., 2020a) and randomized
smoothing (Cohen et al., 2019; Li et al., 2019). Although certified defenses are able to train classifiers
with robustness guarantees for input instances, they usually come with sacrificed empirical robustness,
especially for larger adversarial perturbations.

A.2 THEORETICAL UNDERSTANDING ON INTRINSIC ROBUSTNESS

Given the unsatisfactory status quo of building adversarially robust classification models, a line of
research (Gilmer et al., 2018; Fawzi et al., 2018; Mahloujifar et al., 2019a; Shafahi et al., 2019;
Dohmatob, 2019; Bhagoji et al., 2019) attempted to explain the adversarial vulnerability from a
theoretical perspective. To be more specific, they proved that if the input distribution is concentrated
with respect to the perturbation metric, then there does not exist adversarially robust classifiers.
At the core of these results is the fundamental connection between the concentration of measure
phenomenon and an intrinsic robustness limit, capturing the maximum adversarial robustness with
respect to some specific set of classifiers. For instance, Gilmer et al. (2018) showed that for inputs
sampled from uniform n-spheres, a model-independent robustness upper bound under Euclidean
distance metric can be derived using Gaussian Isoperimetric Inequality (Sudakov & Tsirelson, 1974;
Borell, 1975), whereas Mahloujifar et al. (2019a) generalized their result to any concentrated metric
probability space of inputs. Nevertheless, it still remains unclear how to apply these theoretical results
to typical image classification tasks, since whether or not natural image distributions are concentrated
is unknown.

In order to address such question, Mahloujifar et al. (2019b) proposed a general way to measure the
concentration for any input distribution using data samples, then employed it to estimate an intrinsic
robustness limit for typical image benchmarks. By showing the existence of a large gap between the
limit implied by concentration and the empirical robustness achieved by state-of-the-art adversarial
training methods, Mahloujifar et al. (2019b) further concluded that concentration of measure can
only explain a small portion of adversarial vulnerability of existing image classifiers. More recently,
Prescott et al. (2021) further strengthened their conclusion by using the set of half-spaces to estimate
the concentration function, which achieves enhanced estimation accuracy.

B PRELIMINARIES

This section introduces the most related topics, including the definition of adversarial risk, the
definition of intrinsic robustness, and the standard concentration of measure problem.

Notation. We use lowercase boldface letters such as x to denote vectors. For any set A, let pow(A)
and 1A(·) be all measurable subsets and the indicator function ofA. Consider metric probability space
(X , µ,∆), where ∆ : X ×X → R≥0 is a distance metric on X . Denote by B(∆)

ε (x) the ball around x
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with radius εmeasured by ∆. Define the ε-expansion ofA asA(∆)
ε = {x ∈ X : ∃x′ ∈ B(∆)

ε (x)∩A}.
When ∆ is free of context, we simply write Bε(x) = B(∆)

ε (x) and Aε = A(∆)
ε .

Adversarial Risk. Adversarial risk captures the vulnerability of a classifier against adversarial
perturbations. In particular, we work with the following adversarial risk definition1, which has been
studied in several previous works, such as Gilmer et al. (2018); Bubeck et al. (2019); Mahloujifar
et al. (2019a;b); Zhang et al. (2020b); Prescott et al. (2021).

Definition B.1 (Adversarial Risk). Let (X , µ,∆) be a metric probability space of instances and Y
be the set of possible class labels. Assume c : X → Y is a concept function that gives each instance
a label. For any classifier f : X → Y and ε ≥ 0, the adversarial risk of f is defined as:

AdvRiskε(f, c) = Pr
x∼µ

[
∃ x′ ∈ Bε(x) s.t. f(x′) 6= c(x′)

]
.

The adversarial robustness2 of f is defined as: AdvRobε(f, c) = 1−AdvRiskε(f, c).

When ε = 0, adversarial risk equals to the standard risk. Namely, AdvRisk0(f, c) = Risk(f, c) :=
Prx∼µ[f(x) 6= c(x)] holds for any classifier f . It is worth noting that other related definitions of
adversarial risk, such as the one used in most empirical works for robustness evaluation, are equivalent
to ours, as long as small perturbations do not change the labels assigned by c(·).

Intrinsic Robustness. The definition of intrinsic robustness was first introduced by Mahloujifar et al.
(2019b) to capture the maximum adversarial robustness with respect to some set of classifiers:

Definition B.2 (Intrinsic Robustness). Consider the input metric probability space (X , µ,∆) and the
set of labels Y . Let c : X → Y be a concept function that gives a label to each input. For any set of
classifiers F ⊆ {f : X → Y} and ε ≥ 0, the intrinsic robustness with respect to F is defined as:

AdvRobε(F , c) = 1− inf
f∈F

{
AdvRiskε(f, c)

}
= sup
f∈F
{AdvRobε(f, c)}.

According to the definition of intrinsic robustness, one immediately know that there does not exist
any classifier in F with adversarial robustness higher than AdvRobε(F , c) for the considered
adversarially robust classification task. Existing works, including Gilmer et al. (2018); Mahloujifar
et al. (2019a;b); Zhang et al. (2020b), selected F in Definition B.2 as the set of imperfect classifiers
Fα = {f : Risk(f, c) ≥ α}, where α ∈ (0, 1) is some constant.

Concentration of Measure. Concentration of measure captures a ‘closeness’ property for a metric
probability space of instances. More formally, it is defined by the concentration function as follows:

Definition B.3 (Concentration Function). Let (X , µ,∆) be a metric probability space. For any
0 < α < 1 and ε ≥ 0, the concentration function of (X , µ,∆) is defined as:

h(µ, α, ε) = inf
E∈pow(X )

{µ(Eε) : µ(E) ≥ α}.

The standard notion of concentration function considers a special case of Definition B.3 with α = 1/2
(e.g., see Talagrand (1995)). For some special metric probability spaces, one can prove the closed-
form solution of the concentration function. For instance, Gaussian Isoperimetric Inequality (Borell,
1975; Sudakov & Tsirelson, 1974) characterizes the concentration function for spherical Gaussian
distribution and `2-norm distance metric.

C DETAILED EXPERIMENTAL SETTINGS

This section specifies the details of the experiments presented in Section 4.

1There exist other definitions of adversarial risk in literature, such as the one used in Mądry et al. (2018).
However, these definitions are equivalent ours, as long as small perturbation preserves the ground truth.

2The average distance to the error region has also been used in literature, such as Diochnos et al. (2018), as
an indicator of adversarial robustness. Both of these definitions characterize how resilient the classifier is against
adversarial perturbations.
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For standard trained classifiers, we implemented five neural network architecture, including a 4-layer
neural net with two convolutional layers and two fully-connected layers (small), a 7-layer neural
net with four convolutional layers and three fully-connected layers (large), a ResNet-18 architecture
(resnet18), ResNet-50 architecture (resnet50) and a WideResNet-34-10 architecture (wideresnet). We
trained the small and large model using a Adam optimizer with initial learning rate 0.005, whereas we
trained the resnet18, resnet50 and wideresnet model using a SGD optimizer with initial learning rate
0.01. All models are trained using a piece-wise learning rate schedule with a decaying factor of 10 at
epoch 50 and epoch 75, respectively. For Figure 2(a), we plotted the label uncertainty and standard
risk for the intermediate models obtained at epochs 5, 10, . . . , 100 for each architecture. In addition,
we also randomly selected different subsets of inputs with empirical measure of 0.05, 0.10, . . . 0.95
and plotted their corresponding label uncertainty with error bars.

For adversarially trained classifiers, we implemented the vanilla adversarial training method (Mądry
et al., 2018) and the adversarial training method with adversarial weight perturbation (Wu et al., 2020),
which are denoted as AT and AT-AWP in Figure 2(b) respectively. Both ResNet-18 (resnet18) and
WideResNet-34-10 (wideresnet) architecture are implemented for each training method. A 10-step
PGD attack (PGD-10) with step size 2/255 and maximum perturbation size 8/255 is used for each
model during training. In addition, each model is trained for 200 epochs using a SGD optimizer with
initial learning rate 0.1 and piece-wise learning rate schedule with a decaying factor of 10 at epoch
100 and epoch 150. We record the intermediate models at epoch 10, 20, . . . , 200 respectively.
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