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ABSTRACT

Policy evaluation with rare events, in general, requires a large amount of data.
Most current acceleration methods for Markov chains, such as cross-entropy
methods, and adaptive importance sampling methods, focus on small finite spaces.
They become unaffordable in large finite spaces and suffer from the curse of di-
mensionality due to the discretization when continuous spaces. In this paper, we
propose an accelerated policy evaluation method with adaptive importance sam-
pling, that is scalable to Markov decision processes with large discrete or con-
tinuous spaces, by treating environment nature as an agent and integrating with
function approximators for both value function and importance distribution. The
experiment results in minigrid and highway environments show that when the rare
probability gets smaller, our method is better in terms of the low variance at con-
vergence and the high number of sampled rare events.

1 INTRODUCTION

Machine learning-based sequential decision-making algorithms including reinforcement learning
methods have made impressive success in various areas, but most still lack interpretability. One
way to ensure safety is to do a reliable policy evaluation before deployment, especially when the
applications are safety-critical or expensive, such as medical treatments, bankruptcy, autonomous
driving, and healthcare robotics. Rare failure cases in safety-critical applications make the evaluation
more challenging due to the large amount of data required. Most current methods in estimating
rare event-related probabilities focuses on finite state-space Markov chains (Heidelberger, 1995;
Ahamed et al., 2006) with small discrete state and action spaces, such as cross-entropy methods,
adaptive monte carlo methods (Desai & Glynn, 2001), and adaptive importance sampling methods
(Ahamed et al., 2006). They rely on discretization when continuous spaces suffering from the curse
of dimensionality. Discretization also drops the environment or action structure information and
thus biases evaluation results.

In this paper, we propose an efficient policy evaluation method with adaptive importance sampling,
that is scalable to Markov Decision Processes (MDPs) with large discrete or continuous state and
action spaces. We aim to estimate the expected costs till termination, which can be rare-event related
probabilities or expected rewards. We assume that both the environment transition probability and
the evaluation policy are known. To handle MDPs, we treat uncertainties in environment transition
probabilities as decisions made by the environment nature. Therefore, the importance weights are
related to the policies of the environment. We propose to use the conditional normalizing flow
to represent the environment policy (analogous to the importance distribution). Instead of using
tables to store estimated values, we use a function approximator with high flexibility and capacity as
the representation. The experiments show that our method achieves better performance than other
baselines in terms of the low variance at convergence and the high number of sampled rare events.

2 ADAPTIVE IMPORTANCE SAMPLING FOR DISCRETE MDP

In this section, we introduce the adaptive importance sampling method in MDP settings by treating
uncertainties in environment transition probabilities as decisions made by the environment nature.
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Our method stems from the adaptive stochastic approximation (ASA) (Ahamed et al., 2006) for
the Markov chain. ASA is an online algorithm with the value function and importance distribution
iteratively updating based on recently collected data pairs using dynamic programming paradigm.
At step n, the value function J (n+1)(xn) of current state xn is updated as

J (n+1)(xn) = J (n)(xn) + a
[
− J (n)(xn) +

(
g(xn, xn+1) + J (n)(xn+1)

)
·
pxnxn+1

p
(n)
xnxn+1

]
, (1)

where g(xn, xn+1) is the current cost. pxnxn+1 is the true transition probability and p(n)xnxn+1 is the
importance distribution at step n. The un-normalized importance distribution is then updated as

p̃n+1
xnxn+1

=max
(
δ, pxnxn+1

· g(xn, xn+1) + Jn+1(xn+1)

Jn+1(xn)

)
, (2)

where δ is a positive value much smaller than true transition probability. ASA is proven to find the
zero-variance importance distribution and converge to the true value J∗ with diminishing step size
a asymptotically.

In MDP, the state transition probability relates to both the agent A’s evaluation policy πA and the
environment’s true transition probability p(xn+1|aA, xn). The corresponding Markov chain transi-
tion pxnxn+1

=
∑
aA∈AA πA(aA|xn)p(xn+1|aA, xn). AA is the agent action space. Therefore, the

importance weight at step n in Eq. 1 changes to
pxnxn+1

p
(n)
xnxn+1

=

∑
aA∈AA πA(aA|xn)p(xn+1|aA, xn)∑

aA∈AA π
(n)
A (aA|xn)p(n)(xn+1|aA, xn)

, (3)

where π(n)
A (aA|xn) and p(n)(xn+1|aA, xn) are the importance distributions for the agent policy and

the environment transition probability, respectively.

Treating the environment nature as an agent is widely used in robust learning, multi-agent RL and
game theoretic approaches (Zhang et al., 2020; Mehta et al., 2020; Pinto et al., 2017). It reduces
the computation complexity if the selected environment agent E’s action space AE has a smaller
dimension than that of the state space X . The uncertainty in the environment transition probabil-
ity transfers to the stochasticity of policy πE . The simulation then steps based on a deterministic
mapping fE . Formally, at step n,

p(xn+1|aA,n, xn) = πE(aE,n|aA,n, xn) (4)
xn+1 = fE(xn, aA,n, aE,n) (5)

aE,n = f−1E (xn, aA,n, xn+1) (6)

For simplicity, we only focus on the adaptive importance sampling over environment transition
probability p(xn+1|aA, xn) and π(n)

A (aA|xn) = πA(aA|xn),∀n in Eq. 3. We approximate Eq. 3
with an online stochastic paradigm Eq. 7 to get rid of the integral over AA.

pxnxn+1

p
(n)
xnxn+1

≈ p(xn+1|aA,n, xn)
p(n)(xn+1|aA,n, xn)

=
πE(aE |aA,n, xn)
π
(n)
E (aE |aA,n, xn)

(7)

where aE follows Eq. 6. The approximation Eq. 7 becomes exact if the agent policy πA is determin-
istic.

Therefore, the update rules of value function J and environment policy πE in discrete MDP settings
are derived by replacing Markov Chain transition probabilities with environment policy probabili-
ties.

JTD =
(
g(xn, xn+1) + J (n)(xn+1)

)
· πE(aE |aA,n, xn)
π
(n)
E (aE |aA,n, xn)

(8)

J (n+1)(xn) = J (n)(xn) + a
[
− J (n)(xn) + JTD

]
(9)

π̃n+1
E (aE |aA,n, xn) = max

(
δ, πE(aE |aA,n, xn)

(g(xn, xn+1) + Jn+1(xn+1)

Jn+1(xn)

))
(10)

In this paper, we are interested in a specific application, rare-event probability estimation. In this
case, g(·, ·) is an indicator random variable got from the simulated environment. J(x) represents the
probability of entering rare event set starting from state x.
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Figure 1: A minigrid environment w/ rare events

methods MC ours
metric (×1e3) mean std mean std

J(x1) 3.99 0.38 3.90 0.24
J(x2) 3.93 0.47 3.94 0.23
J(x3) 4.00 0.50 3.94 0.17

#transitions 78300 10600 8884 2595
#episodes 19306 2612 552 134
95% CI n = 15 n = 6

Table 1: Estimation results

2.1 A GRIDWORLD TOY EXAMPLE

We first validate the proposed adaptive importance sampling method in discrete MDP settings with
a minigrid (Chevalier-Boisvert et al., 2018) toy example as in Fig. 1. The rare event means that the
yellow lava moves to the top row and may happen in each step. As shown in Tab. 2, the proposed
method requires 10 percent of the data for the monte carlo (MC) method but has a smaller variance.

3 ADAPTIVE IMPORTANCE SAMPLING FOR CONTINUOUS MDPS

In this section, we introduce how to extend to large discrete or continuous MDPs. The key part is to
select proper function approximators to represent the value function and the environment agent E’s
importance policy. Before doing that, we first establish some notations. We denote the parameters
of J approximators as ψ, and parameters of environment agent E’s importance policy as θ. At step
i, a data pair di = (xi, aA,i, aE,i, xi+1, g(xi, xi+1), ρi) is appended to a history dataset D. Assume
x ∈ X ⊂ Rdx , aA ∈ AA ⊂ Rda , and aE ∈ AE ⊂ Rde . g(xi, xi+1) is the one-step cost. m = |D|
is the cardinality of D. ρi = πE(aE,i|aA,i, xi)/π(i)

E,θ(aE,i|aA,i, xi) is the importance weight.

3.1 VALUE FUNCTION APPROXIMATION

At step n, the target value of state xn follows the Bellman equations with importance weights as in
Eq. 11. Even if pxnxn+1 is accessible, calculating the expectation is still intractable. Therefore, we
approximate the target with one-step TD target defined in Eq. 12. At each update iteration, the target
of each data pair in buffer D is calculated based on the most recent updated value function.

Jψ(xn) = E
π
(n)
E,θ

[
(g(xn, xn+1) + Jψ(xn+1)) · ρn

]
(11)

Jψ,TD(xn) = (g(xn, xn+1) + Jψ(xn+1)) · ρn (12)

Deep Neural Network Approximator To be scalable to large discrete or continuous spaces, one
way is to regress J with an expressive deep neural network (DNN). DNNs are parametric universal
approximators with low prediction complexity. However, DNNs are sensitive to imbalanced data
and suffer from the catastrophic forgetting problem (Krawczyk, 2016; Chrysakis & Moens, 2020),
especially in online learning settings. Methods that stabilize the online learning process are required.

Gaussian Process Regression Approximator One competitive model to a DNN is a Gaussian Pro-
cess (GP). The equivalence between GPs and infinitely wide DNNs is derived in (Lee et al., 2017).
GPs are data-efficient and flexible in making predictions as a non-parametric model, but sacrifices
the prediction complexity (Rasmussen, 2003).

3.2 IMPORTANCE POLICY APPROXIMATION

After fitting the value function approximator, the environment’s policy are updated based on the
most recent data pair dn. The unnormalized target density at value aE,n conditioned on Cn =
[aA,n, xn] is defined in Eq. 13. To deal with continuous spaces, we achieve the modification by
adding a normal distribution N (aE,n, σ) with σ much smaller than that of the ground truth policy
πE(aE |x, aA). The target probability density function conditioned onCn is defined in Eq. 14, where
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β =
√
2πσ(π̃E(aE,n|Cn)− πE,θ(aE,n|Cn)) and γ = 1/(1 + β) is the normalizing constant.

π̃E(aE,n|Cn) = πE(aE,n|Cn)
(g + Jψ(xn+1)

Jψ(xn)

)
(13)

pE(aE |Cn) = γ(πE,θ(aE |Cn) + β · N (aE,n, σ)) (14)

Conditional Normalizing Flow approximator Note that the environment’s policy πE(aE |aA, x) is
a distribution conditioned on continuous random variables. The function approximation πE,θ needs
to (1) have low sample complexity, (2) have interpolation/extrapolation ability and (3) be flexible
enough to model multi-mode distributions. In this paper, we obtain a close-form parametric repre-
sentation of πE(aE |aA, x) usign a conditional Normalizing Flow (cNF). cNFs are recently proposed
in (Papamakarios et al., 2017; Winkler et al., 2019; Oh & Valois, 2020), which are generative models
that use inevitable mappings to transform a simple probability distribution into a complex one con-
ditioned on other random variables. Compared with sample-based representation approaches such
as MCMC, cNF directly generates one sample by calling one forward path (or inverse path based on
implementation), which will dramatically accelerate the evaluation process. cNF is quite expressive
and can model distributions that go beyond single-mode Gaussian distributions.

3.3 EXPERIMENT IN HIGHWAY-INTERSECTION ENVIRONMENT

We test the proposed method with GP as the function approximator in highway environments
(Leurent, 2018). The rare event is defined as the crash. As in Fig. 2, in Intersection-v0 with rare
probability around 0.06, the proposed method is more stable compared with that using discretiza-
tion and achieve similar performance with MC. In Intersection-v1 with rare probability around
0.001, the proposed method has smaller variance than MC. The sampled rare event probability is 7.5
times and 90 times the ground truth probability in v0 and v1, respectively.

(a) Intersection-v0 (b) Intersection-v1

(c) Intersection-v0 (d) Intersection-v1

Figure 2: Experiment results with GP in highway-intersection

4 CONCLUSION

We propose an efficient policy evaluation method scalable to MDPs with large discrete or continuous
spaces in the presence of rare events. The experiment results show that when the rare probability
gets smaller, our method is better in terms of the low variance at convergence and the high number of
sampled rare events. Future work involves experimenting with even smaller rare event probabilities.
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