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ABSTRACT

Previous studies on robustness have argued that there is a tradeoff between ac-
curacy and adversarial accuracy. The tradeoff can be inevitable even when we
neglect generalization. We argue that the tradeoff is inherent to the commonly
used definition of adversarial accuracy, which uses an adversary that can construct
adversarial points constrained by ε-balls around data points. As ε gets large, the
adversary may use real data points from other classes as adversarial examples. We
propose a Voronoi-epsilon adversary which is constrained both by Voronoi cells
and by ε-balls. This adversary balances between two notions of perturbation. As a
result, adversarial accuracy based on this adversary avoids a tradeoff between ac-
curacy and adversarial accuracy on training data even when ε is large. Finally, we
show that a nearest neighbor classifier is the maximally robust classifier against
the proposed adversary on the training data.

1 INTRODUCTION

By applying a carefully crafted, but imperceptible perturbation to input images, so-called adversarial
examples can be constructed that cause classifiers to misclassify the perturbed inputs (Szegedy et al.,
2013). Defense methods like adversarial training (Madry et al., 2017) and certified defenses (Wong
& Kolter, 2018) against adversarial examples have often resulted in decreased accuracies on clean
samples (Tsipras et al., 2018). Previous studies have argued that the tradeoff between accuracy and
adversarial accuracy may be inevitable in classifiers (Tsipras et al., 2018; Dohmatob, 2018; Zhang
et al., 2019).

1.1 PROBLEM SETTINGS

Problem setting. Let X ⊂ Rdim be a nonempty input space and Y be a set of possible classes.
Data points x ∈ X and corresponding classes cx ∈ Y are sampled from a joint distribution D. The
distribution D should satisfy the condition that cx is unique for all x. The set of the data points
is denoted as X . X is a nonempty finite set. A classifier f assigns a class label from Y for each
point x ∈ X . L(x, y) is a classification loss of the classifier f provided an input x ∈ X and a label
y ∈ Y .

More notations are summarized in A.1. Abbreviations are summarized in A.2. We focus on situa-
tions that we neglect generalization to simplify the analysis.

1.2 ADVERSARIAL ACCURACY (AA)

Adversarial accuracy is a commonly used measure of adversarial robustness of classifiers (Madry
et al., 2017; Tsipras et al., 2018). It is defined by an adversary region R(x) ⊂ X , which is an
allowed region of the perturbations for a data point x.
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Definition 1 (Adversarial accuracy). Given an adversary that is constrained to an adversary re-
gion R(x), adversarial accuracy a is defined as follows.

a = E(x,cx)∼D [1 (f(x∗) = cx)] where x∗ = argmax
x′∈R(x)

L(x′, cx)

The choice of R(x) will determine the adversarial accuracy that we are measuring. Commonly
considered adversary region is B(x, ε), which is a ε-ball around a data point x based on a distance
metric d (Biggio et al., 2013; Madry et al., 2017; Tsipras et al., 2018; Zhang et al., 2019).
Definition 2 (Standard adversarial accuracy). When the adversary region is B(x, ε), we refer to
the adversarial accuracy a as standard adversarial accuracy (SAA) astd(ε). For SAA, we denote
R(x) as Rstd(ε;x).

astd(ε) = E(x,cx)∼D [1 (f(x∗) = cx)] where x∗ = argmax
x′∈Rstd(ε;x)

L(x′, cx)

This adversary region B(x, ε) is based on an implicit assumption that there might be an adequate
single epsilon ε that perturbed samples do not change their classes. However, this assumption has
some limitations. We explain that in the next section.

1.3 THE TRADEOFF BETWEEN ACCURACY AND STANDARD ADVERSARIAL ACCURACY

The usage of ε-ball-based adversary can cause the tradeoff between accuracy and adversarial accu-
racy. When the two clean samples x1 and x2 with d(x1, x2) ≤ ε have different classes, the increase
of standard adversarial accuracy requires misclassification. We illustrate this with a toy example.

1.3.1 TOY EXAMPLE

Let us consider an example visualized in Figure 1a. The input space is R2. There are only two
classes A and B, i.e., Y = {A,B}. We use the l2 norm as a distance metric in this example.

Let us consider a situation when ε = 1.0 (see Figure 1c). In this case, clean samples can also be
considered as adversarial examples. For example, the point (2, 1) can be considered as an adversarial
example originating from the point (1, 1). If we choose a robust model based on SAA, we might
choose a model with excessive invariance. For example, we might choose a model that predicts
points belong to B((1, 1), 1) (including the point (2, 1)) have class A. Or, we can choose a model
that predicts points belong to B((2, 1), 1) (including the point (1, 1)) have class B. In either case,
the accuracy of the chosen model is smaller than 1. This situation explains the tradeoff between
accuracy and standard adversarial accuracy when large ε is used. It originates from the overlapping
adversary regions from the samples with different classes.

To avoid the tradeoff between accuracy and adversarial accuracy, one can use small ε values.
Actually, a previous study has argued that commonly used ε values are small enough to avoid
the tradeoff (Yang et al., 2020b). However, when small ε values are used, we can only ana-
lyze local robustness, and we need to ignore robustness beyond the chosen ε. For instance, let
us consider our example when ε = 0.5 (see Figure 1b). In this case, we ignore robustness on
B((−2, 1), 1.0) − B((−2, 1), 0.5). Models with local but without global robustness enable attack-
ers to use large ε values to fool the models. Ghiasi et al. (2019) have experimentally shown that
even models with certified local robustness can be attacked by attacks with large ε values. Note that
their attack applies little semantic perturbations even though the perturbation norms measured by lp
norms are large.

These limitations motivate us to find an alternative way to measure robustness. The contributions
of this paper are as follows.

• We propose Voronoi-epsilon adversarial accuracy (VAA) that avoids the tradeoff between
accuracy and adversarial accuracy. This allows the adversary regions to scale to cover most
of the input space without incurring a tradeoff. To our best knowledge, this is the first work
to achieve this without an external classifier. (In Appendix A.3, we introduce formulas for
adversary regions that can be used to estimate VAA.)

• We explain the connection between SAA and VAA. We define global Voronoi-epsilon ro-
bustness as a limit of the Voronoi-epsilon adversarial accuracy. We show that a nearest
neighbor (1-NN) classifier maximizes global Voronoi-epsilon robustness.
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(a) (b) (c)

Figure 1: (a): Plot of the two-dimensional toy example. Data points are colored based on their
classes (class A: red and class B: blue). (b): Visualization of the adversary regions for SAA when
ε = 0.5. The regions are colored differently depending on their classes (class A: magenta and class
B: cyan). The decision boundary of a single nearest neighbor classifier is shown as a dashed black
curve. (c): Visualization of the adversary regions for SAA when ε = 1.0. The overlapping adversary
regions from the samples with different classes are colored in purple.

2 VORONOI-EPSILON ADVERSARIAL ACCURACY (VAA)

Our approach restricts the allowed region of the perturbations to avoid the tradeoff originating from
the definition of standard adversarial accuracy. This is achieved without limiting the magnitude of ε
and without using an external model. We want to have the following property to avoid the tradeoff.

∀xi, xj ∈ X, xi 6= xj =⇒ R(xi) ∩R(xj) = ∅ (1)

When Property (1) holds for the adversary region, we no longer have the tradeoff as xi /∈ R(xj) for
xi 6= xj . In other words, a clean sample cannot be an adversarial example originating from another
clean sample. We propose a new adversary called a Voronoi-epsilon adversary that combines the
Voronoi-adversary introduced by Khoury & Hadfield-Menell (2019) with an ε-ball-based adversary.
This adversary is constrained to an adversary region V or(x) ∩ B(x, ε) where V or(x) is the (open)
Voronoi cell around a data point x ∈ X . V or(x) consists of every point in X that is closer than any
xclean ∈ X − {x}. Then, Property (1) holds as V or(xi) ∩ V or(xj) = ∅ for xi 6= xj .

Based on a Voronoi-epsilon adversary, we define Voronoi-epsilon adversarial accuracy (VAA).
Definition 3 (Voronoi-epsilon adversarial accuracy). When a Voronoi-epsilon adversary is used
for the adversary, we refer to the adversarial accuracy as Voronoi-epsilon adversarial accuracy
(VAA) aV or(ε). For VAA, we denote R(x) as RV or(ε;x).

aV or(ε) = Ex∈X [1 (f(x∗) = cx)] where x∗ = argmax
x′∈RV or(ε;x)

L(x′, cx)

Note that VAA is only defined on a fixed set of data points X . As we do not know the distribution
D, in practice, the fact that VAA is not defined on the whole input space does not matter.

Figure 2 shows the adversary regions for VAA with varying ε values. When ε = 0.5, the regions
are same with SAA except for the points (1.5, 1), (1.5,−1) and (2,−1.5). Even when ε is large
(ε > 0.5), there is no overlapping adversary region, which was a source of the tradeoff in SAA.
Therefore, when we choose a robust model based on VAA, we can get a model that is both accurate
and robust. Figure 2c shows the single nearest neighbor (1-NN) classifier would maximize VAA.
The adversary regions cover most of the points in R2 for large ε.
Observation 1. Let dmin be the nearest distance of the data point pairs, i.e., dmin =

min
xi,xj∈X,xi 6=xj

d(xi, xj). Then, the following equivalence holds.

aV or(ε) = astd(ε) when ε <
1

2
dmin (2)

Observation 1 shows that VAA is equivalent to SAA for sufficiently small ε values. This indicates
that VAA is an extension of SAA that avoids the tradeoff when ε is large. The proof of the obser-
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Figure 2: Visualization of the adversary regions for VAA with varying ε values. The data points and
regions are colored as in Figure 1. (a): When ε = 0.5. (b): When ε = 1.0. (c): When ε = 3.5.

vation is in Appendix A.5. We point out that equivalent findings were also mentioned in Yang et al.
(2020a;b); Khoury & Hadfield-Menell (2019).

As explained in Section 1.3.1, studying the local robustness of classifiers has a limitation. Attackers
can attack models with only local robustness by using large ε values. The absence of a tradeoff
between accuracy and VAA enables us to increase ε values and to study global robustness. We
define a measure for global robustness using VAA.

Definition 4 (Global Voronoi-epsilon robustness). Global Voronoi-epsilon robustness aglobal is
defined as

aglobal = lim
ε→∞

aV or(ε).

Global Voronoi-epsilon robustness considers the robustness of classifiers for most points in X (all
points except for Voronoi boundary V B(X), which is the complement set of the unions of Voronoi
cells.). We derive the following theorem from global Voronoi-epsilon robustness.

Theorem 1. A single nearest neighbor (1-NN) classifier maximizes global Voronoi-epsilon robust-
ness aglobal on training data. 1-NN classifier is a unique classifier that satisfies this except for
Voronoi boundary V B(X).

Note that Theorem 1 only holds for exactly the same data under the exclusive class condition as
mentioned in the problem settings 1.1. It does not take into account generalization. The proof of the
theorem is in A.6.

3 DISCUSSION

In this work, we address the tradeoff between accuracy and adversarial robustness by introducing the
Voronoi-epsilon adversary. Another way to address this tradeoff is to use a Bayes optimal classifier
(Suggala et al., 2019; Kim & Wang, 2020). Since this is not available in practice, a reference model
must be used as an approximation. In that case, the meaning of adversarial robustness is dependent
on the choice of the reference model. VAA removes the need for a reference model by using the
data point set X and the distance metric d to construct adversary. This is in contrast to Khoury &
Hadfield-Menell (2019) who used Voronoi cell-based constraints (without ε-balls) for an adversarial
training purpose, but not for measuring adversarial robustness.

By avoiding the tradeoff with VAA, we can extend the study of local robustness to global robust-
ness. Also, Theorem 1 implies that VAA is a measure of agreement with the 1-NN classifier. For
sufficiently small ε values, SAA is also a measure of agreement with the 1-NN classifier because
SAA is equivalent to VAA as in Observation 1. This implies that many defenses (Goodfellow et al.,
2014; Madry et al., 2017; Zhang et al., 2019; Wong & Kolter, 2018; Cohen et al., 2019) with small
ε values unknowingly try to make locally the same predictions with a 1-NN classifier.

In our analysis, we do not consider generalization, and robust models are known to often generalize
poorly (Raghunathan et al., 2020). The close relationship between adversarially robust models and
the 1-NN classifier revealed by Theorem 1 highlights a possible avenue to explore this phenomenon.
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A APPENDIX

A.1 LIST OF NOTATION

ε A perturbation budget.
dim The dimension of the input space.
X The nonempty input space. X ⊂ Rdim.
Y The set of possible classes.
cx A corresponding class of a clean data point x ∈ X .
D The joint distribution. D ⊂ X × Y .
X The set of data points. We assume it is a nonempty finite set.
f The classifier that we want to analyze. f : X → Y .
L(x, y) A classification loss of the classifier f provided an input x ∈ X and

a label y ∈ Y .
R(x) An adversary region which is an allowed region of the perturbations

for a data point x. It can be depend on a perturbation budget ε.
1 () The indicator function. 1 (True) = 1 and 1 (False) = 0.
a Adversarial accuracy.
d The distance metric that is used for measuring adversarial robust-

ness. It is not limited to lp norms. It can be a learned metric or more
complex distance.

B(x, ε) An ε-ball around a sample x. Mathematically, B(x, ε) =
{x′ ∈ X |d(x, x′) ≤ ε}.

Rstd(ε;x) The allowed regions of the perturbations for standard adversarial ac-
curacy around a data point x. Rstd(ε;x) = B(x, ε).

astd(ε) Standard adversarial accuracy using a perturbation budget ε. In
other words, the adversarial accuracy when the adversary region is
Rstd(ε;x) = B(x, ε).

HS(x, xclean) The (open) half-space closer to x ∈ X than
xclean ∈ X − {x}. Mathematically, HS(x, xclean) =
{x′ ∈ X |d(x, x′) < d(xclean, x

′)}.
V or(x) The (open) Voronoi cell of a sample

x ∈ X . Mathematically, V or(x) =
{x′ ∈ X |d(x, x′) < d(xclean, x

′),∀xclean ∈ X − {x}} =⋂
xclean∈X−{x}

HS(x, xclean).

RV or(ε;x) The allowed regions of the perturbations for Voronoi-epsilon adver-
sarial accuracy around a data point x. RV or(ε;x) = V or(x) ∩
B(x, ε).

aV or(ε) The Voronoi-epsilon adversarial accuracy using perturbation budget
ε. In other words, the adversarial accuracy when the adversary re-
gion is RV or(ε;x) = V or(x) ∩ B(x, ε).

Sc The complement set of a set S. For S ⊂ X , Sc = X − S.
V B(X) Voronoi boundary based onX . It is the complement set of the unions

of Voronoi cells. V B(X) =

( ⋃
x∈X

V or(x)

)c

=
⋂
x∈X

V or(x)c.

aglobal Global Voronoi-epsilon robustness.
N The number of data points.
RV or;LB(ε;x) The allowed regions of the perturbations for the lower bound of

Voronoi-epsilon adversarial accuracy around a data point x. When
ε < 1

2d(x, xm+2), RV or;LB(ε;x) = RV or(ε;x). When ε ≥
1
2d(x, xm+2), RV or;LB(ε;x) = B(x, ε) ∩

(
m+1⋂
i=2

HS(x, xi)

)
.
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RV or;UB(ε;x) The allowed regions of the perturbations for the upper bound of
Voronoi-epsilon adversarial accuracy around a sample x. When
ε < 1

2d(x, xm+2), RV or;UB(ε;x) = RV or(ε;x). When
ε ≥ 1

2d(x, xm+2), RV or;UB(ε;x) = B(x, 12d(x, xm+2) − τ) ∩(
m+1⋂
i=2

HS(x, xi)

)
.

aV or;LB(ε) The lower bound of Voronoi-epsilon adversarial accuracy using per-
turbation budget ε. It is defined as the adversarial accuracy when the
adversary region for a data point x is RV or;LB(ε;x).

aV or;UB(ε) The upper bound of Voronoi-epsilon adversarial accuracy using per-
turbation budget ε. It is defined as the adversarial accuracy when the
adversary region for a data point x is RV or;UB(ε;x).

A.2 LIST OF ABBREVIATION

AA Adversarial accuracy.
SAA Standard adversarial accuracy.
VAA Voronoi-epsilon adversarial accuracy.
1-NN Single nearest neighbor.
LB Lower bound.
UB Upper bound.

A.3 ADVERSARY REGION RV or(ε;x)

Voronoi-epsilon adversarial accuracy (VAA) uses RV or(ε;x) = V or(x) ∩ B(x, ε). We introduce
upper and lower bounds of RV or(ε;x) using m + 1 nearest neighbors of a data point x. These
bounds enable to calculate approximate upper and lower bounds of VAA.

Lemma 1. WhenN is the number of data points, let x2, · · · , xN ∈ X−{x} be the sorted neighbors
of a data point x ∈ X . Mathematically, d(x, x2) ≤ d(x, x3) ≤ · · · ≤ d(x, xN ). Then, the following
relations hold for a fixed number m ≤ N − 2.

RV or(ε;x) = B(x, ε) when ε <
1

2
d(x, x2) (3)

RV or(ε;x) = B(x, ε) ∩

(
j⋂
i=2

HS(x, xi)

)
when

1

2
d(x, xj) ≤ ε <

1

2
d(x, xj+1)

(j = 2, · · · ,m+ 1)

(4)

B(x,
1

2
d(x, xm+2)− τ) ∩

(
m+1⋂
i=2

HS(x, xi)

)
⊂ RV or(ε;x) ⊂ B(x, ε) ∩

(
m+1⋂
i=2

HS(x, xi)

)

when ε ≥ 1

2
d(x, xm+2) and τ > 0

(5)

When ε < 1
2d(x, xm+2), we can calculate VAA using relations (3) and (4). The relation (5) of

Lemma 1 enables to calculate the lower and upper bound of VAA when ε ≥ 1
2d(x, xm+2). When ε ≥

1
2d(x, xm+2), we denote the leftmost set in the relation (5) asRV or;UB(ε;x) and the rightmost set as
RV or;LB(ε;x). (When ε < 1

2d(x, xm+2), we set RV or;LB(ε;x) = RV or;UB(ε;x) = RV or(ε;x).)
Figure 3 visualizes the relationship RV or;UB(ε;x) ⊂ RV or(ε;x) ⊂ RV or;LB(ε;x) ⊂ Rstd(ε;x).
The proof of the lemma is in Appendix A.4.

Proposition 1. aV or;LB(ε) is defined as the adversarial accuracy when the allowed regions of
perturbation isRV or;LB(ε;x). aV or;UB(ε) is defined as the adversarial accuracy when the allowed
regions of perturbation is RV or;UB(ε;x). Then, the following relation holds.

astd(ε) ≤ aV or;LB(ε) ≤ aV or(ε) ≤ aV or;UB(ε) (6)

The proof of Proposition 1 is in Appendix A.5.
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(a) (b) (c) (d)

Figure 3: Visualization of the adversary region for the point (1,−1) whenm = 3 and ε = 1.5 on our
example 1.3.1. (a): RV or;UB(1.5; (1,−1)). (b): RV or(1.5; (1,−1)). (c): RV or;LB(1.5; (1,−1)).
(d): Rstd(1.5; (1,−1)).

A.4 PROOF OF LEMMA 1

Proof. Relation (3)
First, we consider when ε < 1

2d(x, x2).
Let x′ ∈ B(x, ε). Then, d(x, x′) ≤ ε.
1
2d(x, x2) ≤

1
2d(x, xclean),∀xclean ∈ X − {x}.

Due to the triangle inequality, 1
2d(x, xclean) ≤

1
2d(x, x

′) + 1
2d(x

′, xclean).
When we combine the above inequalities, d(x, x′) ≤ ε < 1

2d(x, x2) ≤
1
2d(x, xclean) ≤

1
2d(x, x

′)+
1
2d(x

′, xclean),∀xclean ∈ X − {x}.
Then, 1

2d(x, x
′) < 1

2d(x
′, xclean) =

1
2d(xclean, x

′),∀xclean ∈ X − {x}. Thus, x′ ∈ V or(x).
Hence, B(x, ε) ⊂ V or(x) and RV or(ε;x) = B(x, ε) ∩ V or(x) = B(x, ε).
Relation (4)
Now, we consider when 1

2d(x, xj) ≤ ε <
1
2d(x, xj+1) (j = 2, · · · ,m+ 1).

RV or(ε;x) = B(x, ε)∩
(
N−1⋂
i=2

HS(x, xi)

)
⊂ B(x, ε)∩

(
j⋂
i=2

HS(x, xi)

)
is obvious as j ≤ N −1.

We only need to proof B(x, ε) ∩
(

j⋂
i=2

HS(x, xi)

)
⊂ RV or(ε;x).

Let x′ ∈ B(x, ε) ∩
(

j⋂
i=2

HS(x, xi)

)
. Then, d(x, x′) ≤ ε, d(x, x′) < d(x2, x

′), · · · , d(x, x′) <

d(xj , x
′).

1
2d(x, xj+1) ≤ 1

2d(x, xk) for k = j + 1, · · · , N − 1.
Due to the triangle inequality, 1

2d(x, xk) ≤
1
2d(x, x

′) + 1
2d(x

′, xk).
When we combine the above inequalities, d(x, x′) ≤ ε < 1

2d(x, xj+1) ≤ 1
2d(x, xk) ≤

1
2d(x, x

′) +
1
2d(x

′, xk) for k = j + 1, · · · , N − 1 .
Then, 1

2d(x, x
′) < 1

2d(x
′, xk) =

1
2d(xk, x

′) for k = j + 1, · · · , N − 1.
We got d(x, x′) ≤ ε, d(x, x′) < d(x2, x

′), · · · , d(x, x′) < d(xN−1, x
′) and we proved B(x, ε) ∩(

j⋂
i=2

HS(x, xi)

)
⊂ RV or(ε;x).

Relation (5)
Finally, we consider when ε ≥ 1

2d(x, xm+2).

(i) B(x, 12d(x, xm+2)− τ) ∩
(
m+1⋂
i=2

HS(x, xi)

)
⊂ RV or(ε;x) for τ > 0:

Let x′ ∈ B(x, 12d(x, xm+2) − τ) ∩
(
m+1⋂
i=2

HS(x, xi)

)
. Then, d(x, x′) ≤ 1

2d(x, xm+2) − τ <

1
2d(x, xm+2) ≤ ε, d(x, x′) < d(x2, x

′), · · · , d(x, x′) < d(xm+1, x
′).

Through similar process used in the proof of Relation (3) and Relation (4), we have d(x, x′) <
1
2d(x, xm+2) ≤ 1

2d(x, xk) ≤
1
2d(x, x

′) + 1
2d(x

′, xk) for k = m+ 2, · · · , N − 1.
Then, 1

2d(x, x
′) < 1

2d(x
′, xk) =

1
2d(xk, x

′) for k = m+ 2, · · · , N − 1.
We got d(x, x′) < ε, d(x, x′) < d(x2, x

′), · · · , d(x, x′) < d(xN−1, x
′) and we proved (i).
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(ii) RV or(ε;x) ⊂ B(x, ε) ∩
(
m+1⋂
i=2

HS(x, xi)

)
:

It is obvious as RV or(ε;x) = B(x, ε) ∩
(
N−1⋂
i=2

HS(x, xi)

)
and m+ 1 ≤ N − 1.

A.5 PROOF OF OBSERVATION 1 AND PROPOSITION 1

Proof. Observation 1
dmin ≤ d(x, xi), ∀x, xi ∈ X,x 6= xi.
When ε < 1

2dmin, ε < 1
2dmin ≤

1
2d(x, xi), ∀x, xi ∈ X,x 6= xi. Thus,RV or(ε;x) = B(x, ε), ∀x ∈

X due to the relation (3) in Lemma 1.
Then, aV or(ε) is same with astd(ε) as RV or(ε;x) = B(x, ε) = Rstd(ε;x),∀x ∈ X .
Proposition 1
First, we consider a data point x ∈ X and let x2, · · · , xN ∈ X − {x} be the sorted neighbors of x.
Let x∗1 = argmax

x′∈Rstd(ε;x)

L(x′, cx), x∗2 = argmax
x′∈RV or;LB(ε;x)

L(x′, cx), x∗3 = argmax
x′∈RV or(ε;x)

L(x′, cx), and

x∗4 = argmax
x′∈RV or;UB(ε;x)

L(x′, cx).

(i) When ε < 1
2d(x, xm+2):

RV or;UB(ε;x) = RV or(ε;x) = RV or;LB(ε;x) from the definition.
RV or;LB(ε;x) = RV or(ε;x) ⊂ B(x, ε) = Rstd(ε;x) from the relations (3) and (4).
Then, 1

(
f(x∗1) = cx

)
≤ 1

(
f(x∗2) = cx

)
= 1

(
f(x∗3) = cx

)
= 1

(
f(x∗4) = cx

)
as

RV or;UB(ε;x) = RV or(ε;x) = RV or;LB(ε;x) ⊂ Rstd(ε;x).
(ii) When ε ≥ 1

2d(x, xm+2):
RV or;UB(ε;x) ⊂ RV or(ε;x) ⊂ RV or;LB(ε;x) from the relation (5).

RV or;LB(ε;x) = B(x, ε) ∩
(
m+1⋂
i=2

HS(x, xi)

)
⊂ B(x, ε) = Rstd(ε;x) from the definition.

Then, 1
(
f(x∗1) = cx

)
≤ 1

(
f(x∗2) = cx

)
≤ 1

(
f(x∗3) = cx

)
≤ 1

(
f(x∗4) = cx

)
as

RV or;UB(ε;x) ⊂ RV or(ε;x) ⊂ RV or;LB(ε;x) ⊂ Rstd(ε;x).
From (i) and (ii), E(x,cx)∼D

[
1
(
f(x∗1) = cx

)]
≤ E(x,cx)∼D

[
1
(
f(x∗2) = cx

)]
≤

E(x,cx)∼D
[
1
(
f(x∗3) = cx

)]
≤ E(x,cx)∼D

[
1
(
f(x∗4) = cx

)]
.

We finished the proof of the relation (6) as astd(ε) = E(x,cx)∼D
[
1
(
f(x∗1) = cx

)]
,

aV or;LB(ε) = E(x,cx)∼D
[
1
(
f(x∗2) = cx

)]
, aV or(ε) = E(x,cx)∼D

[
1
(
f(x∗3) = cx

)]
, and

aV or;UB(ε) = E(x,cx)∼D
[
1
(
f(x∗4) = cx

)]
.

A.6 PROOF OF THEOREM 1

To proof Theorem 1, we introduce the following lemma.

Lemma 2. By changing ε and x ∈ X , x′ that satisfies x′ ∈ RV or(ε;x) can fill up X except for

V B(X). In other words, V B(X)c = X − V B(X) ⊂
⋃
ε≥0

( ⋃
x∈X

RV or(ε;x)

)
.

Proof. Lemma 2
Let x′ ∈ V B(X)c.

V B(X)c = X − V B(X) = X −
( ⋃
x∈X

V or(x)

)c

= X ∩
( ⋃
x∈X

V or(x)

)
=
⋃
x∈X

V or(x).

∃x ∈ X such that x′ ∈ V or(x).
Let ε∗ = d(x, x′). Then, d(x, x′) ≤ ε∗ and x′ ∈ V or(x).

x′ ∈ B(x, ε∗) ∩ V or(x) = RV or(ε
∗;x) ⊂

⋃
ε≥0

( ⋃
x∈X

RV or(ε;x)

)
.

We proved V B(X)c ⊂
⋃
ε≥0

( ⋃
x∈X

RV or(ε;x)

)
.

Now, we proof Theorem 1.
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Proof. Part 1
First, we prove that a 1-NN classifier maximizes global Voronoi-epsilon robustness. We denote the
1-NN classifier as f1−NN and calculate its global Voronoi-epsilon robustness.
For a data point x ∈ X , let x′ ∈ RV or(ε;x) = B(x, ε) ∩ V or(x).
x′ ∈ V or(x)⇐⇒ d(x, x′) < d(xclean, x

′),∀x ∈ X − {x}.
As x′ ∈ RV or(ε;x) ⊂ V or(x), x is unique nearest data point in X and thus f1−NN (x′) = cx.
When x∗ = argmax

x′∈RV or(ε;x)

L(x′, cx), aV or(ε) = E(x,cx)∼D [1 (f1−NN (x∗) = cx)] = E(x,cx)∼D [1] =

1.
aglobal = lim

ε→∞
aV or(ε) = lim

ε→∞
1 = 1. Thus, f1−NN takes the maximum global Voronoi-epsilon

robustness 1.

Part 2
Now, we prove that if f∗ maximizes global Voronoi-epsilon robustness, then f∗ becomes the 1-NN
classifier except for Voronoi boundary V B(X).
Let f∗1 be a function that maximizes global Voronoi-epsilon robustness.
From the last part of the part 1, when we calculate global Voronoi-epsilon robustness of f∗1, it
should satisfy the equation aglobal = 1.
For a data point x ∈ X and ε1 < ε2, RV or(ε1;x) = B(x, ε1) ∩ V or(x) ⊂ B(x, ε2) ∩ V or(x) =
RV or(ε2;x).
Thus, for a data point x ∈ X and ε1 < ε2, 1

(
f∗1(x∗1) = cx

)
≥ 1

(
f∗1(x∗2) = cx

)
where

x∗1 = argmax
x′∈RV or(ε1;x)

L(x′, cx) and x∗2 = argmax
x′∈RV or(ε2;x)

L(x′, cx).

aV or(ε1) = E(x,cx)∼D
[
1
(
f∗1(x∗1) = cx

)]
≥ E(x,cx)∼D

[
1
(
f∗1(x∗2) = cx

)]
= aV or(ε2) for

ε1 < ε2. In other words, aV or(ε) is a decreasing function.
aV or(ε) = 1, ∀ε ≥ 0 (∵ aV or(ε

∗) < 1 for a ε∗ > 0, then it is a contradictory to aglobal = 1 as
aV or(ε) is a decreasing function.).
1 = aV or(ε) = E(x,cx)∼D

[
1
(
f∗1(x∗) = cx

)]
where x∗ = argmax

x′∈RV or(ε;x)

L(x′, cx).

As the calculation is based on the finite set X , f∗1(x∗) = cx (∵ 1
(
f∗1(x∗) = cx

)
= 1) where

x∗ = argmax
x′∈RV or(ε;x)

L(x′, cx).

As x∗ are the worst case adversarially perturbed samples, i.e., samples that output mostly different
from cx, f∗1(x′) = cx = f1−NN (x′) where x′ ∈ RV or(ε;x).
By changing ε and x ∈ X , x′ that satisfies x′ ∈ RV or(ε;x) can fill up X except for V B(X) (∵
Lemma 2). Hence, f∗1 is equivalent to f1−NN except for Voronoi boundary V B(X).
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