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ABSTRACT

An adversarial patch can arbitrarily manipulate image pixels within a restricted
region to induce model misclassification. The threat of this localized attack
has gained significant attention because the adversary can mount a physically-
realizable attack by attaching patches to the victim object. Recent provably robust
defenses generally follow the PatchGuard framework (Xiang et al.L[2021) by using
CNNs with small receptive fields and secure feature aggregation for robust model
predictions. In this paper, we extend PatchGuard to PatchGuard++ for provably
detecting the adversarial patch attack to boost both provable robust accuracy and
clean accuracy. In PatchGuard++, we first use a CNN with small receptive fields
for feature extraction so that the number of features corrupted by the adversar-
ial patch is bounded. Next, we apply masks in the feature space and evaluate
predictions on all possible masked feature maps. Finally, we extract a pattern
from all masked predictions to catch the adversarial patch attack. We evaluate
PatchGuard++ on ImageNette (a 10-class subset of ImageNet), ImageNet, and
CIFAR-10 and demonstrate that PatchGuard++ significantly improves the prov-
able robustness and clean performance.

1 INTRODUCTION

The adversarial patch attack against computer vision systems allows the adversary to arbitrarily
manipulate pixels within a restricted region to induce model misclassification. Compared with the
L, norm bounded adversary, this localized threat model is more realistic in that the adversary can
attach the patch to an object to mount a physical attack (Brown et al., 2017; |[Eykholt et al., [ 2018)). To
counter the threat of an adversarial patch, empirical defenses (Hayes| 2018; |Naseer et al., 2019) were
proposed first but later shown vulnerable to adaptive attackers. The fragility of empirical defenses
has inspired provably robust defenses (Chiang et al.,|2020; Zhang et al.,2020; Levine & Feizi, 2020;
Xiang et al., [2021} |Lin et al.| [2021; |Metzen & Yatsural |2021) for making robust predictions.

Despite the significant progress in provably robust defenses, however, there is still a huge gap be-
tween the provable robust accuracy of defended models and the clean accuracy of undefended mod-
els. To narrow this gap, we relax the defense objective from making robust predictions to robustly
detecting the attack (McCoyd et al |2020). This objective is meaningful in applications where ML
systems can alert users. For example, if an autonomous vehicle detects an adversarial patch attack,
it can alert and return the control to the driver. Towards this end, we propose PatchGuard++ as an ef-
ficient and provably robust attack detection mechanism, which significantly improves both provable
robust accuracy and clean accuracy compared with previous provably robust defenses.

In PatchGuard++, we first follow PatchGuard (Xiang et al.,|2021) to use a CNN with small receptive
fields for feature extraction. The small receptive field bounds the number of features that can be
corrupted by an adversarial patch. Next, we apply a mask to all possible locations in the feature map
and evaluate masked predictions. We empirically observe that the predictions of CNNs are generally
invariant to partial feature masking, and thus all masked predictions of clean images usually reach
a consensus. On the other hand, when an adversarial patch is attached, some masked predictions
are affected by the adversarial perturbations while some are not (when all corrupted features are
masked). This will lead to a disagreement in masked predictions. Our final step aims to catch this
disagreement for provable attack detection. We evaluate our defense on ImageNette (fast.ai, [2020)
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(a 10-class subset of ImageNet), ImageNet (Deng et al.,|2009), and CIFAR-10 (Krizhevsky, 2009)
datasets and demonstrate state-of-the-art defense performance for high-resolution images. Notably,
we achieve a 95.3% clean accuracy and 92.2% provable robust accuracy on the 10-class ImageNette,
against a 2%-pixel square patch (the patch can be anywhere on the image).

2 PROBLEM FORMULATION

Adversarial Patch Attack. We focus on the evasion attack against image classification models.
Given an image x € X C [0, 1]"*H>*3 its true class label y € Y = {0,1,--- , N — 1}, and an
image classification model M(+), the goal of the attacker is to find an image x’ € A(x) satisfying a
constraint .4 such that M(x’) # y. The constrain A(x) is determined by the threat model. In this
paper, we allow the adversary to arbitrarily manipulate pixels within one square contiguous region
and place such restricted region anywhere on the image, which is similar to previous works (Levine
& Feizi, [2020; McCoyd et al., [2020; Xiang et all 2021). Formally, we use a binary pixel block
p € {0, 1}W>H to represent the restricted region, where the pixels within the region are set to one.
The constraint set .A(x) can be expressed as {x’ = (1 — p) © x + p ® x"}, where © refers to the
element-wise product operator, and x” is the content of the adversarial patch.

Provably Robust Defense for Attack Detection. We consider the strongest adaptive attacker who
has the perfect knowledge of the defense mechanisms as well as the white-box access to the model
architecture and weights. We focus on the provably robust defense whose robust guarantee holds for
any attacker considered in the threat model. The goal of provable attack detection is to make normal
predictions on clean images but alert when an attack takes place.

3 PATCHGUARD++: PROVABLE ATTACK DETECTION

Defense Intuition. Our key observation is that clean images are generally prediction-invariant to
partial feature masking while adversarial patched images are not. When benign features are masked,
the model is likely to give the same prediction; when corrupted features are completely masked,
the adversary cannot influence the model prediction, and the model prediction is likely to change.
Therefore, we can move a mask, which is large enough to mask out all corrupted features, over the
feature map, and take the inconsistent masked prediction as an attack indicator. In the remainder of
this section, we will introduce our notation, the defense algorithm, and its provable analysis.

Notation. The defense takes an image x as input and outputs prediction M (x) or issues an attack
alert. The model M (-) can be any CNN with small receptive fields (relatively small compared with
the input image size). We use F to denote the feature extractor of the model M (), and F(x) gives
the feature map u € R *H' <" We will abuse the notation to let M (u) denote making prediction

based on the feature map u. Weuse w € W C {0, 1}W'XH " to denote a sliding window over the
feature space, where elements within the window are set to ones and others are zeros.

Algorithm. We provide our defense pseudocode in Algorithm [I] We first get the prediction gy and
confidence ¢, from the model with small receptive fields M (x), as well as feature map u = F(x).
Next, we try every window mask w & WP_-] and get masked prediction g; and confidence ¢; from
M((1 — w) © u). If the confidence ¢; is larger than confidence threshold 7 and the prediction g
is different from g, our defense detects an inconsistent prediction and returns alert (i.e., attack
detected). If confidence ¢; is smaller than 7, we consider this masked prediction “abstains” and will
not affect our final prediction. Finally, if we find all possible non-abstained masked predictions are
consistent, we assume there is no attack and return the original model prediction M (x).

Provable Analysis. We provide pseudocode for provable analysis in Algorithm [2| Given a clean
image x and its label y, we will evaluate all possible masked predictions. If all predictions do
not abstain (¢; > 7) and are correct (y; == y), we will know at least one masked prediction is
non-abstained and correct regardless of any attack strategy, including adaptive white-box attacks.
Therefore, our defense (Algorithm [T)) will either predict y correctly or alert for this certified image.

'The size of window masks can be computed as w = [(p + r — 1)/s], where p is an estimation of the
upper bound of patch size, r is the receptive field size, and s is the stride size of receptive field (Xiang et al.|
2021). This window mask size can ensure that at least one window masks out the all corrupted features.
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Algorithm 1 PatchGuard++ Algorithm 2 PatchGuard++ provable analysis

Input: Image x, feature extractor F of model  Input: Image x, label y, feature extractor F of
M, confidence threshold 7, the set of slid- model M, confidence threshold 7, the set
ing windows W of sliding windows W

Output: Prediction M(x) oralert Output: Whether x has provable robustness

1: procedure PG2

2: Jo, Co — M(x) > Predict w/o masks 1: procedure PG2PROVABLEANALYSIS

3: u — F(x) > Extract features 2 u — F(x) > Extract features
4: for each w € W do 3 for each w € W do

5: 71,61 < M((1 —w) ® u) > Mask 4 71,¢1 +— M((1 —w) ®u) > Mask
6: if ¢, > 7 and 71 # 7, then 5 if ¢y < 7ory; # y then

7: return alert > Alert! 6: return False > Incor./Abst.
8: end if 7 end if

9: end for 8 end for
10 return M (x) > No attack 9 return True > Provably robust!
11: end procedure 10: end procedure

Remark. We note that Minority Report (MR) (McCoyd et al., [2020) also adopts a similar idea
of masking and prediction consensus. However, MR uses pixel-space masks, which incurs an ex-
tremely large overhead (requires expensive model inference for each mask) and makes MR inap-
plicable to high-resolution images like ImageNet (Deng et al., [2009). In contrast, the feature-space
masking in PatchGuard++ reduces the number of all possible masks and also reuses the expensive
feature extraction computation, making PatchGuard++ easily scale to ImageNet images.

4 EVALUATION

In this section, we present the evaluation results of PatchGuard++ on different datasets and demon-
strate state-of-the-art provable robust accuracy and clean accuracy on high-resolution images.

Datasets. We evaluate proposed defenses on three datasets: ImageNet (Deng et al., |2009), Ima-
geNette (fast.ai,[2020), and CIFAR-10 (Krizhevskyl, 2009). ImageNet is a 1000-class high-resolution
(resized and cropped to 224 x224) image classification benchmark; ImageNette is a 10-class subset
of ImageNet. CIFAR-10 is a popular image benchmark dataset with a low resolution of 32 x32; we
rescale it to 192x 192 as the input of PatchGuard++ as done in PatchGuard (Xiang et al., [2021)).

Setup. We use BagNet-33 (Brendel & Bethgel [2019) with a small receptive field of 33x33 as the
backbone CNN. Following previous works (Xiang et al., 2021} Metzen & Yatsura), 2021)), we use
2%-pixel square patch for ImageNette and ImageNet, a 2.4%-pixel square patch for CIFAR-10.

Evaluation. In Table[T] we report the results for PatchGuard++ and also compare them with previous
provably robust defenses. PG-Mask-BN (Xiang et al.| 2021)), PG-Mask-BN (Xiang et al., 2021},
and BagCert (Metzen & Yatsura, [2021)) are provably robust for making correct predictions while
MR (McCoyd et al., [2020) and PatchGuard++ are provably robust for detecting an attack. For
previous defenses, we report results that are available in its original paper. For PatchGuard++, we
report results with different confidence threshold .

Observation: PatchGuard++ works extremely well on high-resolution images, significantly outper-
forming all previous defenses in terms of provable robust accuracy and clean accuracy. We report
defense performance in Table[I] Since MR is computationally infeasible for high-resolution images,
we only compare performance with robust prediction defenses on ImageNette and ImageNet. No-
tably, PatchGuard++ achieves a high clean accuracy of 96.1% and a high provable robust accuracy
of 91.8% on ImageNette (setting 7 = 0.6), outperforming all previous defenses. On ImageNet,
PatchGuard++ has a 6+% higher clean accuracy, and 13+% higher provable robust accuracy than all
previous defenses when setting 7 = 0.5! Moreover, if we set 7 = 0.3 (not listed in the table), we
can achieve a similar clean accuracy (56.1%) as PG-Mask-BN (54.6%) but a much higher provable
robust accuracy (45.4%; 19.4% higher!).

Observation: PatchGuard++ also achieves comparable or better provable robust accuracy on low-
resolution images. The comparison between MR and PatchGuard++ on CIFAR-10 shows that MR
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Table 1: Clean and provable robust accuracy for different defenses (PG-Mask-BN, PG-Mask-DS,
and BagCert are for robust prediction; MR and PatchGuard++ are for robust detection).

Dataset | ImageNette | ImageNet | CIFAR-10

Accuracy | clean | robust | clean | robust | clean | robust
PG-Mask-BN (Xiang et al.,[2021) | 95.0 86.7 54.6 26.0 83.9 47.3
PG-Mask-DS (Xiang et al.| [2021) | 92.1 79.7 43.6 15.7 84.6 57.7
BagCert (Metzen & Yatsural, 2021) | NA NA 46.0 229 86.0 60.0
92.4 43.8
MR (McCoyd et al., [2020) computationally infeasible 90.6 62.1
78.8 77.6
PatchGuard++ (7 = 0.8) 96.9 87.7 62.9 28.0 84.8 68.9
PatchGuard++ (7 = 0.7) 96.6 90.2 62.7 32.0 82.5 71.7
PatchGuard++ (7 = 0.6) 96.1 91.8 62.1 35.5 80.2 74.3
PatchGuard++ (7 = 0.5) 95.3 92.9 60.9 39.0 78.0 76.3

has a slightly better provable robustness in certain settings. However, the computation cost of MR
is 100x higher than ours (making it inapplicable to images in higher resolutions). Moreover, we
can see PatchGuard++ achieves a huge improvement in provable robust accuracy compared with
previous robust prediction defenses.

Observation: Threshold T balances the trade-off between clean accuracy and provable robust ac-
curacy of PatchGuard++. As shown in Table[I] as we decrease 7, the clean accuracy drops while
the provable robust accuracy increases (both due to more non-abstained predictions). We note that
the provable robust accuracy increases much more quickly than clean accuracy drops, which also
demonstrates the strength of our defense design.

5 RELATED WORK

Attacks. Brown et al.| first proposed a universal targeted adversarial patch attack in the physical
world to hijack the model prediction (Brown et al.l 2017). Karmon et al.| later proposed a more
powerful LaVAN attack in the digital domain (Karmon et al.| 2018). More following up works
also showed that the localized adversary can achieve a robust physical attack against traffic sign
recognition, human detection (Eykholt et al., 2018 |Chen et al., 2018). Effective defenses against
these realistic attacks are needed.

Defenses. Heuristic-based Digital Watermarking (Hayes, 2018) and Local Gradient Smooth-
ing (Naseer et al., |2019) defenses were proposed to tackle the threat of localized attacks. How-
ever, they had been shown vulnerable to an adaptive attacker (Chiang et al., 2020). To provide a
stronger security guarantee, (Chiang et al.| proposed the first provable defense against the localized
patch attack using Interval Bound Propagation (IBP) (Gowal et al., 2019; Mirman et al., 2018)).
Afterwards, Clipped BagNet (CBN) (Zhang et al., [2020), De-randomized Smoothing (DS) (Levine
& Feizi, 2020), Minority Report (MR) (McCoyd et al., 2020), PatchGuard (Xiang et all |2021),
BagCert (Metzen & Yatsura, [2021]) were proposed to improve provable security guarantee against
the adversarial patch attack. PatchGuard++ proposed in this paper can be viewed as a hybrid of
PatchGuard (small receptive fields + feature masking) and MR (checking consensus of masked pre-
dictions), and it significantly outperforms previous provably robust defenses.

6 CONCLUSION

In this paper, we propose PatchGuard++ for provably detecting localized adversarial patch attacks.
PatchGuard++ is an extension of PatchGuard, and achieves provable robustness by detecting in-
consistency in all possible feature-masked predictions. Our evaluation on three benchmark datasets
demonstrates that our defense significantly boosts clean performance and provable robustness on
high-resolution images.
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