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ABSTRACT

In backdoor attacks, it is often implicitly assumed that the poisoned classifier is
vulnerable exclusively to the adversary who possesses the trigger. In this paper, we
show empirically that this view of backdoored classifiers is fundamentally incorrect.
We demonstrate that anyone with access to the classifier, even without access to any
original training data or trigger, can construct several alternative triggers that are
as effective or more so at eliciting the target class at test time. We construct these
alternative triggers by first generating adversarial examples for a smoothed version
of the classifier, created with a recent process called Denoised Smoothing, and then
extracting colors or cropped portions of adversarial images. We demonstrate the
effectiveness of our attack through extensive experiments on ImageNet and TrojAI
datasets. Furthermore, we demonstrate that our alternative triggers can in fact look
entirely different from the original trigger, highlighting that the backdoor actually
learned by the classifier differs substantially from the trigger image itself. Thus,
we argue that there is no such thing as a “secret” backdoor in poisoned classifiers:
poisoning a classifier invites attacks not just by the party that possesses the trigger,
but from anyone with access to the classifier.

1 INTRODUCTION

Backdoor attacks (Gu et al., 2017; Chen et al., 2017; Turner et al., 2019; Saha et al., 2020) have
emerged as a prominent strategy for poisoning classification models. An adversary, controlling the
training data can inject a “trigger” such that at inference time, the presence of this trigger always
causes the classifier to make a specific prediction while performance of the classifier on the clean
data is not affected. In backdoor attacks, one common implicit assumption is that the backdoor
is considered to be secret and only the attacker who owns the backdoor can control the poisoned
classifier. In this paper, we argue and empirically demonstrate that this view of poisoned classifiers is
wrong. Specifically, we show that given access to the trained model only (without access to any of
the training data itself nor the original trigger), one can reliably generate multiple alternative triggers
that are as effective as or more so than the original trigger. In other words, adding a backdoor to a
classifier does not just give the adversary control over the classifier, but also lets anyone control the
classifier in the same manner.

Key to our approach is how we find these alternative triggers. An overview of our attack procedure
is depicted in Figure 1. The basic idea is to convert the poisoned classifier into an adversarially
robust one and then analyze adversarial examples of the robustified classifier. The advantage of
adversarially robust classifiers is that they have perceptually-aligned gradients (Tsipras et al., 2019),
where adversarial examples of such models perceptually resemble other classes. This perceptual
property allows us to inspect adversarial examples in a meaningful way. To convert a poisoned
classifier into a robust one, we use a recently proposed technique Denoised Smoothing (Salman et al.,
2020), which applies randomized smoothing (Cohen et al., 2019) to a pretrained classifier prepended
with a denoiser. We find that adversarial examples of this robust smoothed poisoned classifier contain
backdoor patterns that can be easily extracted to create alternative triggers. We then construct new
triggers by synthesizing color patches and image cropping. Despite being generated from a single
test image, these alternative triggers turn out to be effective across the entire test set and sometimes
even exceed the attack performance of initial backdoor. Finally, we evaluate our attack on poisoned

∗mingjies@cs.cmu.edu

1



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

classifiers from two datasets: ImageNet and TrojAI (Majurski, 2020) datasets. We demonstrate that
for several commonly-used backdoor poisoning methods, our attack consistently finds successful
alternative triggers.
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Figure 1: Overview of our attack. Given a poisoned classifier, we construct a robustified smoothed
classifier using Denoised Smoothing (Salman et al., 2020). We then extract colors or cropped patches
from adversarial examples of this robust smoothed classifier to construct novel triggers. These
alternative triggers have similar or even higher attack success rate than the original backdoor.

2 METHODOLOGY

In this section, we present our attack on poisoned classifiers given access to the poisoned classifier and
test data. We consider the common threat model (Gu et al., 2017; Turner et al., 2019; Saha et al., 2020)
of backdoor poisoning, where images patched with the backdoor are predicted as target class. The
attack success rate is defined as the percentage of test data (not including images from target class) clas-
sified into target class when the trigger is applied. For an overview of related work, see Appendix A.

2.1 GENERATING PERCEPTUALLY-ALIGNED ADVERSARIAL EXAMPLES

Recent work (Tsipras et al., 2019; Santurkar et al., 2019) find that loss gradients of adversarially
robust models align well with human perception and adversarial examples of such models show
salient characteristics of corresponding misclassified class. However, in our case, poisoned classifiers
are not adversarially robust by construction (Gu et al., 2017). To generate perceptually meaningful
adversarial examples, we propose to use Denoised Smoothing (Salman et al., 2020) to convert
the poisoned classifier into an adversarially robust one. Denoised Smoothing prepends a pretrained
classifier f with a custom-trained denoiserD and then applies randomized smoothing to the combined
network. Thus, for a poisoned classifier, we apply Denoised Smoothing to convert it into a robust
smoothed classifier. We then generate adversarial examples of the smoothed classifier, using the
method in Salman et al. (2019). Specifically, we use the SMOOTHADVPGD method in Salman et al.
(2019) and sample Monte-Carlo noise vectors to estimate the gradients of the smoothed classifier.
Adversarial examples are generated with a l2 norm bound ε.

2.2 BACKDOOR PATTERNS IN ADVERSARIAL EXAMPLES

Trigger A Trigger B

Figure 2: Backdoor triggers
used in our analysis.

Our overall strategy is to analyze the adversarial examples of ro-
bustified poisoned classifiers. We generate untargeted adversarial
examples (though through these untargeted examples it will become
obvious which is the poisoned class). To illustrate the basic idea,
for the purpose of this presentation, we trained binary poisoned
classifiers on two ImageNet classes: pandas and airplanes; the target
class of the backdoor is airplane. We used BadNet (Gu et al., 2017)
for backdoor poisoning. After training, and without access to any training data, we then applied
Denoised Smoothing to create a robust version of the classifier.

In Figure 3, we show l2 adversarial panda images (ε = 20/60) of the robust version of two poisoned
classifiers and a clean classifier. Two backdoor triggers are shown in Figure 2, where Trigger A is a
30× 30 synthetic trigger with random colors, created in the backdoor attack method HTBA (Saha
et al., 2020) and Trigger B is a 30× 30 hello kitty image. The crucial point here is that for adversarial
examples of robustified poisoned classifiers, there are local color regions that are immediately
visually apparent. For larger perturbation size (ε = 60), these colors become more saturated despite
background noise. While for a clean classifier, such regions are much less prevalent.
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Poisoned Classifier 1 (Trigger A)
Clean Images

Poisoned Classifier 2 (Trigger B) Clean Classifier

Figure 3: Visualization of some adversarial examples (ε = 20/60) from two robustified poisoned
classifiers and a robustified clean classifier. Trigger A and Trigger B are shown in Figure 2.

Success rate:
66.45%

Clean Adversarial ( )

Cropped patch

Clean Adversarial ( )Color patch

Success rate:
75.90%

Color patch

Success rate:
85.80%

Success rate:
89.20%

Cropped patch

Figure 4: Results for attacking a poisoned multi-class classifier obtained through BadNet (Gu et al.,
2017). The attack success rate of the original backdoor Trigger A is 72.60%.

2.3 BREAKING POISONED CLASSIFIERS

We now describe how we use the backdoor patterns to construct the alternative triggers. We adopt two
strategies: 1) synthesize a patch with colors obtained from the local regions with backdoor patterns;
2) crop a patch image that contains the backdoor pattern. We then use the constructed triggers to
attack the poisoned classifier. We find that these triggers are able to generalize well to other images in
the test set, attaining high attack success rates. We can use the procedure described above (illustrated
in Figure 1) to break a poisoned classifier even if we do not have access to the initial trigger. Since
our attack constructs the triggers from adversarial examples, one could argue that this is caused by
the transferability of adversarial patches (Brown et al., 2017), which could be a general property of
all classifiers (i.e., our attack may also work for clean classifier by creating an adversarial patch). To
address this point, we also evaluate our attack on clean classifiers (Results are shown in Section 3)
and find that clean classifiers are not broken by our method.

The need for human interaction. It is worth noting that part of our approach involves human
interaction. We believe that this can be a benefit for two reasons. First, the likely practical use cases
of identifying poisoned classifiers is quite different than that of identifying or avoiding adversarial
examples. Each potentially-poisoned classifier requires substantial time investment to train and
operate. But the additional time it will take to perform these kind of manual “forensic analysis” is a
relatively small time commitment. The second reason that human interaction is needed is precisely
due to the fundamental nature of adversarial examples. If we relied on automated procedures to select
the “suspicious” elements in an image, it would likely be possible to construct triggers that function
as adversarial examples for these detectors, and thus evade detection. It is exactly (and, arguabley,
only) by integrating a human in the loop, which is entirely feasible in the data-poisoning use case,
that we can hope to avoid the possibility of adversarial attacks against a fully automated system.

3 EXPERIMENTS

In this section, we present our attack results on poisoned classifiers in ImageNet (TrojAI results are
in Appendix C.4). For Denoised Smoothing, we use the MSE-trained ImageNet denoiser adopted
from Salman et al. (2020). To make backdoor presence conspicuous, we synthesize large-ε untargeted
adversarial examples (ε = 20, 60). The noise level we use in smoothed classifiers is 1.00, as Kaur et al.
(2019) shows that larger noise level leads to better visual results. We train both binary and multi-class
poisoned classifiers with three backdoor attack methods: BadNet (Gu et al., 2017), HTBA (Saha et al.,
2020) and CLBD (Turner et al., 2019). Since only HTBA has conducted evaluation on ImageNet, we
follow its setup for training poisoned classifiers. We adopt Trigger A in Figure 2 as the default trigger.
We refer the reader to Appendix B for more details on the experimental setup.
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BadNet HTBA CLBD
Binary 98.80%/91.60% 99.80%/94.00% 93.80%/90.00%

Multi-class 89.20%/72.60% 82.30%/74.55% 67.90%/58.95%
Table 1: Overall performance of our attack. For “X/Y”, X is the highest attack success rate among
the triggers that we demonstrate in this paper and Y is the success rate of the original backdoor.

Breaking poisoned classifiers In Figure 4, we present sample alternative backdoor triggers we
constructed by attacking a BadNet poisoned multi-class classifier on ImageNet. We refer the reader to
Appendix C for results on other poisoned classifiers. We can see that all alternative triggers have rela-
tively high success rate. A summary of attack results for all poisoned classifiers is in Table 1. For each
poisoned classifier, we compare the highest success rate achieved by the alternative triggers presented
in this paper and the success rate of the initial backdoor (Trigger A). For all six poisoned classifiers
we investigate, our attack finds an alternative trigger more effective than the original backdoor.
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Cropped patch
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1.84%

Figure 5: Results of applying our
attack on an ImageNet clean classi-
fier.

Clean classifiers are not easily broken. We show that clean
classifiers are not broken under our attack. Since clean classi-
fiers are not poisoned, there is no such concept as attack success
rate. To measure the effect of the alternative triggers, we report
the error rates of clean classifiers when alternative triggers are
applied. Figure 5 shows the result of attacking a clean classifier.
We refer the reader to Appendix C for more results on clean
classifiers. Observe that clean classifiers have low error rates
when alternative triggers are applied, remaining robust under
our attack.

“Camouflaged” Backdoor We study the case when backdoor trigger is not colorful or contains colors
already in the color distribution of clean images. Consider Trigger C in Figure 6a: black and white
colors in this trigger are also representative colors of a panda. We train a poisoned binary classifier
on ImageNet using Trigger C as the backdoor, where the backdoor attack method is BadNet (Gu
et al., 2017). In Figure 6a, we visualize adversarial examples of the robustified poisoned classifier.
Although there is no clear backdoor pattern in the form of dense color regions, we can observe that
there is a tendency for black regions to have vertical or horizontal boundaries, which resembles the
pattern in Trigger C. Despite the absence of obvious backdoor patterns, we are still able to break the
poisoned classifier using cropped patterns from large-ε (ε = 100) adversarial examples as shown in
Figure 6b. Notice that both of the triggers are noisy and seem completely different from Trigger C,
but they attain higher attack success rate (88.60% and 83.00%) than the original backdoor (75.80%).
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Success rate:
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(a) Adversarial examples of a robustified poisoned classifier with Trigger C as the backdoor.
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(b) Attacking a poisoned classifier with the “camouflaged” backdoor (success rate 75.80%).
Figure 6: Analysis of a poisoned classifier with a “camouflaged” backdoor trigger.

4 CONCLUSION

This work shows that backdoor attacks create poisoned classifiers that can be easily attacked even
without knowledge of the original backdoor. We find that adversarial examples of a robustified
poisoned classifier can contain backdoor patterns. We then construct new poison triggers using the
backdoor patterns and find that they give comparable or even better attack performance than the
initial backdoor.

4



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

REFERENCES

Tom B. Brown, Dandelion Mane, Aurko Roy, Martı́n Abadi, and Justin Gilmer. Adversarial patch.
arXiv preprint arXiv:1712.09665, 2017.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized
smoothing. ICML, 2019.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Alek-
sander Madry. Adversarial robustness as a prior for learned representations. arXiv preprint
arXiv:1906.00945, 2019.

Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C. Ranasinghe, and Surya Nepal. Strip:
A defence against trojan attacks on deep neural networks. arXiv preprint arXiv:1902.06531, 2019.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. ICLR, 2015.

Tianyu Gu, Dolan-Gavitt Brendan, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. Tabor: A highly accurate approach
to inspecting and restoring trojan backdoors in ai systems. ICDM, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CVPR, 2016.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. NeurIPS, 2019.

Simran Kaur, Jeremy Cohen, and Zachary C. Lipton. Are perceptually-aligned gradients a general
property of robust classifiers? arXiv preprint arXiv:1910.08640, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, 2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang. Invisible
backdoor attacks on deep neural networks via steganography and regularization. arXiv preprint
arXiv:1909.02742, 2019.

Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang, Zhifeng Li, and Shutao Xia. Rethinking the
trigger of backdoor attack. arXiv preprint arXiv:2004.04692, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Michael Paul Majurski. Challenge round 0 (dry run) test dataset, 2020. URL https://data.
nist.gov/od/id/mds2-2175.

Tulio Ribeiro Marco, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. KDD, 2016.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going
deeper into neural networks, 2015. URL https://ai.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html.

Vitali Petsiuk, Abir Das, and Saenko Saenko. Rise: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

5

https://data.nist.gov/od/id/mds2-2175
https://data.nist.gov/od/id/mds2-2175
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

R Selvarajk Ramprasaath, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion. ICCV, 2017.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 1992.

Aniruddha Saha, Akshayvarun Subraymanya, and Pirsiavash Hamed. Hidden trigger backdoor attacks.
AAAI, 2020.

Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Sebastien
Bubeck. Provably robust deep learning via adversarially trained smoothed classifiers. NeurIPS,
2019.

Hadi Salman, Mingjie Sun, Greg Yang, Ashish Kapoor, and J. Zico Kolter. Denoised smoothing: A
provable defense for pretrained classifiers. NeurIPS, 2020.

Shibani Santurkar, Dimitris Tsipras, Brandon Tran, Andrew Ilyas, Logan Engstrom, and Aleksander
Madry. Image synthesis with a single (robust) classifier. NeurIPS, 2019.

Ezekiel Soremekun, Sakshi Udeshi, and Sudipta Chattopadhyay. Exposing backdoors in robust
machine learning models. arXiv preprint arXiv:2003.00865, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

A. N. Tikhonov, A. S. Leonov, and A. G. Yagola. Nonlinear ill-posed problems. World Congress of
Nonlinear Analysts, 1992.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. NeurIPS,
2018.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. ICLR, 2019.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor attacks, 2019.
URL https://openreview.net/forum?id=HJg6e2CcK7.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y.
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. IEEE
Symposium on Security and Privacy, 2019.

Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical
detection of trojan neural networks: Data-limited and data-free cases. ECCV, 2020.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26
(7):3142–3155, 2017.

6

https://openreview.net/forum?id=HJg6e2CcK7


Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

A BACKGROUND

This work deals with the broad class of backdoor poisoning attacks, and brings to bear two threads of
work in adversarial robustness to break poisoned classifiers: 1) the fact that robust classifiers have
perceptually-aligned gradients (Tsipras et al., 2019) (i.e., that reveal information about the underlying
classes); 2) the use of randomized smoothing (Cohen et al., 2019) to build robust classifiers, with
recent work (Salman et al., 2020) showing that one can robustify a pretrained classifier. We discuss
each of these subjects in turn. Then we clarify two points regarding our approach.

Backdoor Attacks In backdoor attacks (Chen et al., 2017; Gu et al., 2017; Li et al., 2019; 2020), an
adversary injects poisoned data into the training set so that at test time, clean images are misclassified
into the target class when the trigger is present. BadNet (Gu et al., 2017) achieve this by modifying a
subset of training data with the backdoor trigger and set the labels to the target class. One drawback
of BadNet is that poisoned images are often clearly mislabeled, thus making the poisoned training
data easily detected by human eyes or simple data filtering (Turner et al., 2019). To address this
issue, Clean-label backdoor attack (CLBD) (Turner et al., 2019) and Hidden trigger backdoor
attack (HTBA) (Saha et al., 2020) propose poison generation methods which assign correct labels
to poisoned images. There are also efforts to design defenses against backdoor attacks (Tran et al.,
2018; Wang et al., 2019; Gao et al., 2019; Guo et al., 2020; Wang et al., 2020; Soremekun et al.,
2020). Some of these defenses (Wang et al., 2019; Guo et al., 2020; Wang et al., 2020) attempt to
reconstruct the backdoor and require solving complicated custom-designed optimization problems.
Soremekun et al. (2020) propose a method to detect poisoned classifiers if poisoned classifiers are
also adversarially robust.

Adversarial Robustness Aside from backdoor attacks, another major line of work in adversarial
machine learning focuses on adversarial robustness (Szegedy et al., 2013; Goodfellow et al., 2015;
Madry et al., 2017; Ilyas et al., 2019), which studies the existence of imperceptibly perturbed inputs
that cause misclassification in state-of-the-art classifiers. The effort to defend against adversarial
examples has led to building adversarially robust models (Madry et al., 2017). In addition to being
robust against adversarial examples, adversarially robust models are shown to have perceptually-
aligned gradients (Tsipras et al., 2019; Engstrom et al., 2019): adversarial examples of those classifiers
show salient characteristics of other classes. This property of adversarially robust classifiers can be
used, for example, to perform image synthesis (Santurkar et al., 2019).

Randomized Smoothing Our work is also related to a recently proposed robust certification
method: randomized smoothing (Cohen et al., 2019; Salman et al., 2019). Cohen et al. (2019) show
that smoothing a classifier with Gaussian noise results in a smoothed classifier that is certifiably
robust in l2 norm. Kaur et al. (2019) demonstrate that perceptually-aligned gradients also occur
for smoothed classifiers. Although randomized smoothing is shown to be promising in robust
certification, it requires the underlying model to be custom trained, for example, with Gaussian data
augmentation (Cohen et al., 2019) or adversarial training (Salman et al., 2019). To avoid the tedious
customized training, Salman et al. (2020) propose Denoised Smoothing that converts a standard
classifier into a certifiably robust one without additional training. Specifically, it prepends a denoiser
to a pretrained classifier prior to applying randomized smoothing.

On “defending against” versus “breaking” poisoned classifiers While our focus in this work is
on “breaking backdoored classifiers”, it might be tempting to instead view it as a “defense against
backdoor attacks”. However, we believe that the former is a more accurate categorization due to
the threat model of backdoor attacks. In a typical threat model associated with backdoor attacks, an
attacker will introduce its poisoned data at training time, and the user then is free to perform whatever
analysis is needed upon the classifier in order to assess its vulnerability before deployment. In other
words, the attacker must “move first” in the game, and the user is free to “move second” to analyze
the classifier; this is in stark contrast to test-time adversarial robustness, where a defender must “move
first” to create a robust classifier, and the attacker is then permitted to create adaptive adversarial
inputs crafted toward that particular classifier. While it is certainly plausible that alternative backdoor
strategies may prove more difficult to analyze with our approach, the impetus here is on the attacker
rather than the defender to demonstrate this possibility.

On our attack versus adversarial patch attack It may seem odd to claim that backdoored classifiers
are “broken” by demonstrating their vulnerability to a patch attack, especially given the well-known
fact that virtually any (non-robust) classifier can be similarly attacked via an adversarial patch (Brown
et al., 2017). However, to a large extent this is a matter of degree: while it’s absolutely true that
patch attacks exist for any classifier, our work here highlights just how easily an effective attack
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can be constructed against a backdoored classifier, precisely because such a classifier is trained to
allow it. In contrast, our approach notably will not produce effective triggers against clean classifiers
(See Figure 5 in Section 3); while it would also be possible for an attacker to essentially interpolate
between what qualified as a “backdoor trigger for a poisoned classifier” and an “adversarial patch for
a clean classifier”, the point of this work is to emphasize the degree to which backdoored classifiers
make the task of breaking them easy and remarkably effective.
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B EXPERIMENTAL DETAILS

B.1 EXPERIMENTAL SETUP

The class of the binary classifier is hand-picked: “panda” vs “airplane”. For the multi-class classifier,
5 classes are chosen randomly. We use AlexNet (Krizhevsky et al., 2012) architecture (Except for
CLBD, we use ResNet (He et al., 2016) for the backdoor attack to be successful). We construct
alternative triggers of the same size as the original trigger for ImageNet1. We apply alternative
triggers to random locations (same as the initial backdoor) for ImageNet and a fixed place near the
center for TrojAI2. To evaluate the attack success rate, we use 50 images for binary classifier and 200
images for multi-class classifier in the test set; for TrojAI dataset, we use the released 500 sample
test images for each classifier.

B.2 TRAINING DETAILS

We follow the experiment setting in HTBA (Saha et al., 2020), with publicly available code-
base https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks.
HTBA divides each class of ImageNet data into three sets: 200 images for generating poisoned data,
800 images for training the classifier and 100 images for testing. The trigger is applied to random
locations on clean images. Poisoned datasets are first constructed with corresponding backdoor attack
methods. Then we fine-tune the last fully-connected layer of pretrained AlexNet (Krizhevsky et al.,
2012) on the created poisoned datasets. The fine-tuning process starts with initial learning rate of
0.001 decayed by 0.1 every 10 epochs and in total takes 10/30 epochs. The number of poisons are
400 images except for BadNet poisoned multi-class classifier, where we find that 1000 poisons are
required to achieve high backdoor attack success rate.

We implement the method of CLBD (Turner et al., 2019) utilizing adversarial examples on ImageNet.
We find that training poisoned classifiers with CLBD is difficult on ImageNet if we follow the exact
steps described in Turner et al. (2019). We find that we are able to successfully train poisoned
ResNets (He et al., 2016) by initializing the classifiers with adversarially robust classifiers that are
used to generate poisoned data in CLBD. We train adversarially robust classifiers for both binary
classification and multi-class classification. For training binary poisoned classifiers, we use 400
adversarial images with perturbation size ε = 32 in l2 norm as poisoned data. For training multi-class
poisoned classifier, we use 400 adversarial images with ε = 8 in l2 norm as poisoned data.

B.3 COMPUTING ADVERSARIAL EXAMPLE

In our attack, we need to compute adversarial examples of a smoothed classifier. To achieve
this, we optimize the SMOOTHADV objective (Salman et al., 2019) with projected gradient de-
scent (PGD) (Madry et al., 2017; Kurakin et al., 2016). The code for attacking smoothed
classifier is adopted from public available codebase https://github.com/Hadisalman/
smoothing-adversarial. Denoiser model is an ImageNet DnCNN (Zhang et al., 2017)
denoiser trained with MSE loss, adopted from the public codebase of Denoised Smoothing
in https://github.com/microsoft/denoised-smoothing.

All adversarial examples are computed by untargeted adversarial attacks with a l2 norm bound ε. We
use 16 Monte-Carlo noise vectors to estimate gradients of smoothed classifiers. The number of PGD
steps is 100. Step size at each iteration is 2×(perturbation size ε) / (# of steps). Except for attacking
the poisoned classifier with “camouflaged” backdoor in Figure 6b, where we find that in this case,
larger step size leads to slightly better visual results, thus we set step size to be 5 in Figure 6b.

Deep Dream We optimize the adversarial objective with Deep Dream framework adopting
the implementation from public codebase https://github.com/eriklindernoren/
PyTorch-Deep-Dream. We perform 4 iterations, scaling the image by 1.2 every iteration. Due
to the large memory requirements of Deep Dream, we use 5 Monte-Carlo noise vectors to estimate
gradients. At each iteration, we use 100 steps with step size 5.

1In TrojAI, the exact shape of backdoor trigger is not provided. Here we adopt the same setting as ImageNet.
2For TrojAI, we are not aware of where the trigger is applied in the training process of poisoned classifiers.

We choose this location in order for the alternative triggers to be applied at the foreground object (an artificial
sign). (Sample images in https://pages.nist.gov/trojai/docs/data.html)
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Regularization We apply Tikhonov regularization to minimize the l2 norm of image gradients of
adversarial perturbations. We also experimented with another well-studied denoising objective Total
Variation (TV) loss (Rudin et al., 1992), which minimizes the distance between neighboring pixels.
TV loss can be seen as a special case of Tikhonov regularization with a specific filter. Comparison of
two regularization techniques is shown in Figure 16.
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C ADDITIONAL ATTACK RESULTS

C.1 IMAGENET BINARY POISONED CLASSIFIER

Here we show the complete results for attacking binary poisoned classifiers on ImageNet in Figure 7.
Notice that we find effective alternative triggers for all three poisoned classifiers.
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(a) Results for attacking a binary poisoned classifier obtained through BadNet (Gu et al., 2017). The
attack success rate of the original backdoor Trigger A is 91.60%.
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(b) Results for attacking a binary poisoned classifier obtained through HTBA (Saha et al., 2020). The
attack success rate of the original backdoor Trigger A is 94.00%.
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(c) Results for attacking a binary poisoned classifier obtained through CLBD (Turner et al., 2019). The
attack success rate of the original backdoor Trigger A is 90.00%.

Figure 7: Results for attacking three binary poisoned classifiers obtained by three backdoor attacks.
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C.2 IMAGENET MULTI-CLASS POISONED CLASSIFIER

In Figure 8, we present the results for attacking two poisoned multi-class classifiers on ImageNet
obtained by HTBA (Saha et al., 2020) and CLBD (Turner et al., 2019). We can see that our attack
constructs effective triggers in both cases.
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(a) Results for attacking a multi-class poisoned classifiers obtained through BadNet (Gu et al., 2017).
The attack success rate of the original backdoor Trigger A is 72.60%.
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(b) Results for attacking a multi-class poisoned classifiers obtained through HTBA (Saha et al., 2020).
The attack success rate of the original backdoor Trigger A is 74.55%.
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(c) Results for attacking a binary poisoned classifiers obtained through CLBD (Turner et al., 2019).
The attack success rate of the original backdoor Trigger A is 58.95%.

Figure 8: Results for attacking multi-class poisoned classifiers on ImageNet obtained by BadNet (Gu
et al., 2017), HTBA (Saha et al., 2020) and CLBD (Turner et al., 2019).
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C.3 IMAGENET CLEAN CLASSIFIERS

In Figure 9 and Figure 10, we show the results of attacking clean ImageNet classifiers (binary and
multi-class). We can see that the clean classifier is not vulnerable to the triggers constructed by our
approach.
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Figure 9: Results of applying our attack on an ImageNet clean classifier (multi-class).
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Figure 10: Results of applying our attack on an ImageNet clean classifier (binary).
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C.4 RESULTS ON TROJAI DATASET

TrojAI dataset (Majurski, 2020) consists of a mixed set of clean and poisoned classifiers, proposed to
help develop backdoor defense methods. We choose this dataset as it contains a large set of trained
poisoned classifiers. Different from ImageNet, we are not aware of the exact backdoor triggers used
to poison the classifiers. In Figure 12, we show attack results on ten poisoned classifiers. As shown
in Figure 12, our method can attack these poisoned classifiers with high success rate. Similarly, the
cropped trigger achieves higher success rate than the color trigger for both classifiers. In Figure 11,
we show the results of applying our attack method to two clean classifiers from TrojAI datasets. It
can be seen that clean classifiers can classify more than half of the test images correctly even if they
are patched by the constructed triggers.

Denoised Smoothing Basic Adv Saliency Map
Participants User 1 User 2 User 3 User 4 User 5
Accuracy 94% 90% 66% 82% 54%

Table 2: Accuracies that participants obtained for identifying poisoned classifiers in the user study.

Finally, we conduct a user study on the TrojAI dataset to test the generality of our approach. We
develop an interactive tool implementing our method to aid the study. Participants are asked to analyze
classifiers with the tool and decide if they are poisoned. Two control groups are used: 1) participants
are given a variant of the tool using adversarial examples of the original classifier (denoted as “Basic
Adv”); 2) participants are given saliency maps on clean images (denoted as “Saliency Map”). Details
on the user study and the interactive tool are in Appendix E. Results are summarized in Table 2,
where we show the accuracies of identifying poisoned classifiers for three approaches. Overall, the
study suggests that analysts with access to our tool are able to substantially outperform those using
alternative methods.
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Figure 11: Results of attacking two clean classifiers in the TrojAI dataset.
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Figure 12: Results of attacking 8 poisoned classifiers in the TrojAI dataset.
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D ADDITIONAL VISUALIZATION RESULTS

D.1 ADVERSARIAL EXAMPLES ON TROJAI DATASET

Figure 13 presents the adversarial examples of a robustified poisoned classifier from the TrojAI
dataset, where each row shows images from one class. Below each image we show the class predicted
by the poisoned classifier (not the smoothed classifier). We highlight those adversarial images with
clear backdoor patterns. Note that they are all classified into class 2, which is indeed the target class
of backdoor attack. While adversarial images from class 4 (the last row) have dense black regions, we
believe that this is a result of mimicking features of class 0 (the class that these images are predicted
into) and it can be easily tested using our method that these black regions can not be used to construct
successful triggers.

4 4 4 4 4

2 2 2 2 2

1 1 1 1 1

2 2 2 2 2

0 0 0 0 0

Figure 13: Adversarial examples (ε = 20 in l2 norm) of a robustified poisoned classifier in the TrojAI
dataset. Below each image is the class predicted by the original poisoned classifier.
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D.2 COMPARISON OF DIFFERENT ADVERSARIAL EXAMPLES

Figure 14 shows more results on comparing different adversarial examples (ε = 20).

Original Basic Adv Smoothing Denoised Smoothing

Figure 14: Comparison of different adversarial examples (ε = 20) of a robustified binary poisoned
classifier on ImageNet.
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D.3 ENHANCED VISUALIZATION TECHNIQUES

We discuss some techniques to help with visualizing adversarial examples.

D.3.1 DEEP DREAM

We adopt the idea from Deep Dream (Mordvintsev et al., 2015) by iteratively optimizing a certain
objective starting with the resized output from previous iteration. It uses this iterative optimization
process to generate artistic style images. In our case, we iteratively optimize the adversarial objective,
so that backdoor patterns formed at earlier stages can be incorporated into those forming at later
stages. Figure 15 shows the comparison of adversarial images with or without enhanced visualization
techniques (Deep Dream and Regularization). We can see that for Deep Dream, there are more
backdoor patterns in a single adversarial image than Denoised Smoothing. Together with Tikhonov
regularization method, the backdoor patterns become more stable and less noisy.

Original Denoised Smoothing Deep Dream Deep Dream + Regularization

Figure 15: Effects of enhanced visualization techniques on adversarial examples of a robustified
ImageNet binary poisoned classifier.
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D.3.2 REGULARIZATION

Large-ε adversarial images tend to become noisy. Thus, we apply Tikhonov regularization (Tikhonov
et al., 1992). It minimizes a loss function defined as a l2-regularization of the magnitude of image
gradients (directional change in the intensity of colors). In Figure 16, we show how regularization
can be used to reduce background noise in large-ε adversarial examples. We generate adversarial
images with ε = 60. For Denoised Smoothing, we see that there is some background noise. For both
regularization techniques, we see that adversarial images are less distorted and there are less noise
patterns.

Original Denoised Smoothing
Denoised Smoothing + 

TV Loss

Denoised Smoothing + 

Tikhonov regularization 

Figure 16: Comparison of adversarial examples generated with/without regularization.
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E USER STUDY

E.1 TROJAI INTERACTIVE TOOL

In Figure 17, we show a brief overview of the interactive tool which implements our attack method.
The first half of the tool, as shown in Figure 17a, allows users to visualize adversarial examples
with chosen attack parameters. Below each image is the class that the adversarial image is predicted.
Figure 17b presents the second half of the tool, where users can create new alternative patch triggers
and see the classifier’s prediction on patched poisoned images.

(a) First half of the interactive tool.

(b) Second half of the interactive tool.

Figure 17: Interface of interactive tool we develop for TrojAI dataset.
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E.2 DETAILS ON USER STUDY

We describe our setup for user study in detail. 5 people joined the study. We divide them into three
groups: 2 people for Denoised Smoothing, 2 people for the control group “Basic Adv” and 1 person for
the control group “Saliency Map”. For all three groups, participants are asked to mark 50 classifiers as
either poisoned or clean. For Denoised Smoothing and “Basic Adv”, we ask participants to apply our
attack method with the interactive tool and test if the model can be successfully attacked by alternative
triggers. If so, then mark the classifier as poisoned. For the control group “Saliency Map”, Figure 18
shows some sample saliency maps of a poisoned classifier. We use RISE (Petsiuk et al., 2018) to
generate saliency maps, as it is shown to outperform other saliency map approaches (Ramprasaath
et al., 2017; Marco et al., 2016). For this control group, participants are given the ground-truth labels
(poisoned/clean) and saliency maps for 10 classifiers and then try to mark the 50 unlabelled classifiers
based on the provided information from 10 labelled classifiers.

.

Figure 18: Sample saliency maps of a poisoned classifier on clean images.
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F THE IMPACT OF TRIGGER LOCATIONS ON BACKDOOR PATTERNS

In this part, we investigate the effect of trigger locations during training on the backdoor patterns
in adversarial examples. Specifically, we apply the triggers to fixed image locations (center, lower
left, upper left, lower right, upper right ) during training. We use BadNet (Gu et al., 2017) to train
poisoned classifiers with Trigger A. Adversarial examples of robustified poisoned classifiers are
shown in Figure 19. It can be seen that trigger locations do not affect the backdoor patterns in
adversarial examples.

Center

Clean

Lower Left

Upper Left

Lower Right

Upper Right

Figure 19: Adversarial examples of robustified poisoned classifiers with different fixed trigger
locations during training.
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G IMAGENET CLASSIFIERS WITH MORE CLASSES

In this section, we evaluate our method on ImageNet classifier with more number of classes. We
randomly select 10 classes from 1000 ImageNet classes. We then use BadNet (Gu et al., 2017) to
train a poisoned classifier with Trigger A. Figure 20 shows the results for attacking this poisoned
classifier. We can observe that these alternative triggers have similar or even higher attack success
rate than the original trigger.
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Figure 20: Results of attacking a poisoned ImageNet classifier with 10 classes. The success rate of
the original backdoor is 59.71%.

23


	Introduction
	Methodology
	Generating Perceptually-Aligned Adversarial Examples
	Backdoor patterns in adversarial examples
	Breaking poisoned classifiers

	Experiments
	Conclusion
	Background
	Experimental details
	Experimental setup
	Training details
	Computing Adversarial example

	Additional Attack Results
	ImageNet Binary Poisoned classifier
	ImageNet multi-class poisoned classifier
	ImageNet clean classifiers
	Results on TrojAI dataset

	Additional Visualization Results
	Adversarial examples on TrojAI dataset
	Comparison of different adversarial examples
	Enhanced Visualization techniques
	Deep Dream
	Regularization


	User study
	TrojAI interactive tool
	Details on User Study

	The impact of trigger locations on backdoor patterns
	ImageNet classifiers with more classes

