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ABSTRACT

While randomized smoothing is an efficient method that presents certified robust-
ness, it requires multiple classifiers for each noise type and scale. On the other
hand, the denoised smoothing circumvents the multiple training of classifiers by
deploying an image denoiser at the front of the classifier. Yet denoised smooth-
ing also requires training multiple denoisers for each noise type and scales, we
introduce a unified denoiser that can be applied for various noise types and scales,
with one neural network estimator. Our idea is built on a score-based generative
model which estimates the score function of data distribution. We show that train-
ing only one multi-scale score estimator can enhance the performance of denoised
smoothing, and can be applied to various `p norm adversaries which were not
available before. We validate our methods through experiments on ImageNet and
CIFAR-10, under various `p adversaries.

1 INTRODUCTION

The deep neural network base image classifiers are susceptible to deliberate noises as known as
adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2014; Carlini & Wagner, 2017). Even
though many works proposed heuristics that can annul or mitigate adversarial attacks, most of them
were broken by stronger attacks (Athalye et al., 2018; Athalye & Carlini, 2018). The vulnerability
of empirical defenses had led the researchers to scrutinize on certified defenses, which ensure the
models to have constant output within the allowed set around given input. Unfortunately, many
provable defenses are not feasible to large-scale neural networks because of their constraints on the
architecture.

The randomized smoothing, on the other hand, is a practical method that does not restrain the choice
of neural networks. The randomized smoothing converts any base classifier to a smoothed classifier
by making predictions over randomly perturbed samples. Then the smoothed classifiers are guaran-
teed to have a `p certified radius, which is theoretically derived by the noise type used for smoothing.
Since Cohen et al. (2019) derived tight `2 certified radius for Gaussian randomized smoothing, se-
quential works studied the certification bounds for various distributions (Teng et al., 2020; Yang
et al., 2020).

As the smoothed classifier makes the base classifier to predict on noisy samples, many works sug-
gested methods to train the base classifier to deal with noisy inputs, which results in redundant
classifiers trained with different noise types and scales. On the other hand, the denoised smoothing
is a method that doesn’t require auxiliary training of classifiers. It prepends image denoiser to the
pre-trained classifier so that the noisy input is recovered before feeding into the classifier. However,
those approach also requires multiple image denoiser for each noise type and scale. In this work, we
develop denoised smoothing by introducing score-based image denoising. We exploit multi-scale
denoising score matching (Song & Ermon, 2019) for score estimation, and propose an efficient sim-
ulated annealing algorithm for image denoising. Remark that we only require one score network to
certify various noise distributions and levels. We provide experiments on ImageNet and CIFAR-10
to show the efficacy of our methods. Specifically, our methods perform better than original denoised
smoothing, while can be applied to various noise types without any re-training. Furthermore, we
compare with the random-ensemble based method, which we refer to white-box smoothing, and
show that our method works are comparable to them.
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2 BACKGROUNDS ON RANDOMIZED SMOOTHING AND DENOISED
SMOOTHING

2.1 RANDOMIZED SMOOTHING

Let f : Rd → Y be a classifier and q be a distribution on Rd. Then the randomized smoothing with
q is a method that converts the base classifier f to the associated smoothed classifier g, where g(x)
returns the class which is most likely to be predicted by the base classifier f when x is perturbed by
a random noise sampled from q, i.e.,

g(x) = arg max
c∈Y

Pr
u∼q(u)

[
f(x + u) = c

]
. (1)

Robustness guarantee for smoothed classifiers Suppose an adversary can perturb the input x
inside the allowed set B, which is usually an `p ball centered at x. For the case when B is `2 ball
and q is Gaussian distribution N (0, σ2I), g(x) is robust within the radius

R =
σ

2

(
Φ−1(p1)− Φ−1(p2)

)
(2)

where Φ is inverse cumulative distribution function, and p1 = maxc Pr[f(x + u) = c] and p2 =
maxc6=g(x) Pr[f(x+u) = c]. The derivation for Gaussian distribution was first introduced by Cohen
et al. (2019), and has been generalized to various distributions (Teng et al., 2020; Yang et al., 2020).

2.2 DENOISED SMOOTHING

While randomized smoothing can theoretically achieve certified robustness, it requires the base clas-
sifier to predict over perturbed samples. Many works proposed training of classifiers by noisy data
augmentation (Cohen et al., 2019), adversarial training (Salman et al., 2019), or regularizations (Zhai
et al., 2019). In contrast to training the classifier for randomized smoothing, Salman et al. (2020) pro-
posed denoised smoothing which prepends image denoiser to the pre-trained classifier. By training
denoiser Dθ : Rd → Rd, the smoothed classifier converted from f ◦ Dθ outperforms ’no-denoiser’
baseline. They proposed training denoisers with mean squared error (MSE) loss or classification
(CLF) loss, or combining both methods. The CLF loss makes the denoiser constrained to the classi-
fier, so has limited application.

3 SCORE-BASED IMAGE DENOISING

3.1 IMAGE DENOISING WITH SCORE FUNCTION

The image denoising is an example of linear inverse problem, which can be formulated as following:
given an observation y = x + u with u ∼ q(u) finds x̂(y) that is close to original x. Let x ∼ p(x)
then the distribution of y is pq(y) =

∫
p(y,x)dx =

∫
p(y|x)p(x)dx =

∫
q(y − x)p(x)dx =

(p ∗ q)(y).

One-step denoiser Suppose q is a Gaussian distributionN (0, σ2I) and let the distribution of y by
pσ2 . Let us define the score function of density p(x) by ∇x log p(x), then the optimal denoiser can
be obtained by estimating the score of pσ2 (see Appendix for proof). Let sθ(·;σ) be score network
that estimates score of smoothed density pσ2 . Then the denoiser from sθ is given by

x̂(y) = y + σ2sθ(y;σ). (3)

Multi-step denoiser Otherwise, one can consider the maximum a posteriori (MAP) estimator that
maximizes the conditional distribution p(x|y). Formally the MAP loss is given by,

arg min
x

LMAP(x;y) = arg min
x

− log p(x) + γφ(y − x), (4)

where φ is logarithm of q and γ is a hyperparameter (see Appendix for derivation). We aim to
approximate the gradient of LMAP by the score of Gaussian smooth densities. Let the approximate
MAP loss with σ̃ by

LMAP,σ̃(x;y) = − log pσ̃2(x) + φ(y − x). (5)
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`2 radius (CIFAR-10) 0.25 0.50 0.75 1.00 1.25 1.50
white-box smoothing (Cohen et al., 2019) 59 45 31 21 18 13
denoised smoothing (Query Access) (Salman et al., 2020) 45 20 15 13 11 10
denoised smoothing (Full Access) (Salman et al., 2020) 56 41 28 19 16 13
denoised smoothing (Our method) 60 42 28 19 11 6

Table 1: Certified accuracy of ResNet-110 on CIFAR-10 at various `2 radii.

`2 radius (ImageNet) 0.25 0.50 0.75 1.00 1.25 1.50
white-box smoothing (Cohen et al., 2019) 62 52 45 39 34 29
denoised smoothing (Query Access)(Salman et al., 2020) 48 31 19 12 7 4
denoised smoothing (Full Access)(Salman et al., 2020) 50 33 20 14 11 6
denoised smoothing (Our method) 56 41 30 24 17 11

Table 2: Certified accuracy of ResNet-50 on ImageNet at various `2 radii.

Then we can approximate the gradient of LMAP,σ̃(x;y) by score network and perform gradient
descent initialized with x0 = y as following:

xt+1 = xt − α∇xtLMAP,σ̃(x;y) ≈ xt + α(sθ(xt; σ̃) +∇xtφ(y − xt)). (6)

Remark that the proposed method can be applied to any log-concave noise distributions. In appendix,
we present theorem that shows the recovery guarantee when q is a Gaussian distribution.

3.2 MULTISCALE DENOISING SCORE MATCHING AND SIMULATED ANNEALING

Recently, score network trained by multi-scale denoising score matching objective has shown to be
effective for generative modeling (Song & Ermon, 2019). Multi-scale denoising score matching
is weighted sum of denoising score matching objectives with various noise magnitudes. Given a
sequence of noise levels {σi}Li=1, which is the variance of centered Gaussian distribution, the total
loss function with σ2

i is given as following:

L(θ; {σi}Li=1) =
1

L

L∑
i=1

σ2
i

2
Ex∼p,y∼N (x,σ2

i I)

[∥∥∥∥sθ(y;σi) +
y − x

σ2
i

∥∥∥∥2
2

]
. (7)

Given mutli-scale score estimator, we conduct multistep denoising with simulated annealing, which
runs update with noise magnitudes that anneals to the smallest. The simulated annealing allows
faster optimization, which is suitable for denoised smoothing. The detailed algorithm and empiri-
cal analyses on how multi-scale denoising score matching objective helps denoised smoothing are
presented in the appendix.

4 EXPERIMENTS

We study the performance of score based denoised smoothing on ImageNet (Deng et al., 2009) and
CIFAR-10 Krizhevsky et al. (2009). We measured the certified accuracy at R, which is the fraction
of test set for which the smoothed classifier correctly predicts and certifies robust at an `p radius
bigger than R. Detailed experimental settings can be found in appendix.

First, we experimented the performance of one-step denoiser for Gaussian randomized smoothing.
We compare with 1) white-box smoothing, which is canonical approach that trains base classifiers
with Gaussian data augmentation (Cohen et al., 2019), and 2) the denoised smoothing with denois-
ers trained by Salman et al. (2020). For all experiments on denoised smoothing, we used same
ResNet110 classifier for CIFAR-10 and pytorch pretrained ResNet50 classifier for ImageNet. The
results are in Table 1 and Table 2. We found out that for CIFAR-10, our method achieves better
performance than original denoised smoothing, while is on par with white-box smoothing. Also, for
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Figure 1: The performance of multi-step denoiser for denoised smoothing. The blue lines are our
methods, and red lines are white-box smoothing which are experimented by each authors. (a) `2
certified accuracy with Gaussian smoothing on CIFAR-10, (b) `1 certified accuracy with Laplace
smoothing on CIFAR-10, (c) `1 certified accuracy with uniform smoothing on CIFAR-10, (d) `2
certified accuracy with Gaussian smoothing on ImageNet, (e) `1 certified accuracy with Laplace
smoothing on ImageNet, (f) `1 certified accuracy with uniform smoothingon ImageNet,.

ImageNet, our method achieves better performance than original denoised smoothing, yet is slightly
below than white-box smoothing.

Next, we demonstrate the effectiveness of our multi-step denoiser on denoised smoothing using var-
ious noise types. For a baseline, we compare with white-box smoothing which is training classifiers
with noisy data augmentation. We experimented on Gaussian noise (Cohen et al., 2019), Laplace
noise (Teng et al., 2020), and uniform noise (Yang et al., 2020) for both CIFAR-10 and ImageNet.
For all experiments, we used ResNet110 classifiers for CIFAR-10 and ResNet50 classifiers for Im-
ageNet. See Appendix for more details. It is important to claim that all experiments are done with
the only one score-network for each CIFAR-10 and ImageNet.

5 CONCLUSION

In this work, we presented a score-based denoised smoothing which exploits score estimation neural
network for certified defense of any classifier that can be used regardless of noise types and scales.
We empirically found out that our method performs better than original denoised smoothing, while
comparable to randomized smoothing with noisy trained base classifiers.

We believe that current randomized smoothing is theoretically well-designed but needs to be scalable
to be deployed for real world applications. On that perspective, our approach is a good initial
point that can endow robustness to any classifier without any re-training. However, the hardness of
estimating score function of high-dimensional data should be compromised. We believe using better
architecture or devising faster optimization algorithm might help.
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A DETAILED EXPLANATIONS

A.1 FORMULATION OF IMAGE DENOISING PROBLEM

The image denoising is an example of linear inverse problem, which can be formulated as following:
given an observation y = x + u with u ∼ q(u) finds x̂(y) that is close to original x. Let x ∼ p(x)
then the distribution of y is pq(y) =

∫
p(y,x)dx =

∫
p(y|x)p(x)dx =

∫
q(y − x)p(x)dx =

(p ∗ q)(y).

One-step denoiser Suppose q is a Gaussian distributionN (0, σ2I) and let the distribution of y by
pσ2 . Then the following proposition (Robbins, 1956; Lu & Stephens, 2019; Saremi & Hyvarinen,
2020) reveals the relationship between the optimal denoiser Dθ∗ and pσ2 .
Proposition A.1. Assume θ∗ ∈ arg minθ LMSE(θ), then the following equation holds:

Dθ∗(y) = y + σ2∇y log pσ2(y) (8)

The proof of proposition A.1 is in Appendix B. Let us define the score function of density p(x) by
∇x log p(x), then the optimal DAE can be obtained by estimating the score of pσ2 . Let sθ(·;σ) be
score network that estimates score of smoothed density pσ2 . Then the denoiser from sθ is given by

x̂(y) = y + σ2sθ(y;σ). (9)
Remark that it is only valid when q is Gaussian distribution.

Multi-step denoiser Consider the maximum a posteriori (MAP) estimator that maximizes the
conditional distribution p(x|y). Formally the MAP loss is given by,

arg min
x

LMAP(x;y) = arg min
x

− log p(x|y) (10)

= arg min
x

− log p(x)− log p(y|x) + log p(y) (11)

= arg min
x

− log p(x)− log q(y − x) (12)

= arg min
x

− log p(x) + φ(y − x). (13)

Note that we simply remove density term p(y) and rewrite with q. Lastly, we rewrite q with φ. Since
the density p(x) is usually intractable for high-dimensional dataset, one may use approximation to
make the MAP loss tractable. Many recent works focused on using cutting edge generative models
such as generative adversarial network (GAN) or invertible neural networks to approximate p(x) in
equation 12 (Ulyanov et al., 2018; Whang et al., 2020; Asim et al., 2020). However, GAN suffer
from mode collapse, and invertible neural networks require extremely long steps to reach local
minima, which are not sufficient for randomized smoothing.

Instead, we aim to approximate the gradient of LMAP by the score of Gaussian smooth densities. Let
the approximate MAP loss with σ̃ by

LMAP,σ̃(x;y) = − log pσ̃2(x) + φ(y − x). (14)
Then we can approximate the gradient of LMAP,σ̃(x;y) by score network and perform gradient
descent initialized with x0 = y as following:

xt+1 = xt − α∇xtLMAP,σ̃(x;y) ≈ xt + α(sθ(xt; σ̃) +∇xtφ(y − xt)). (15)
Remark that the proposed method can be applied to any log-concave noise distributions. Following
theorem shows the recovery guarantee of our methods when q is a Gaussian distribution.
Theorem A.2. Let x∗ be local optimum of p(x), and y = x∗ + u where u ∼ N (0, σ2I). Assume
− log p is µ-strongly convex within the neighborhood Br(x) = {z : ‖z − x‖ ≤ r}. Then, the
gradient descent method on approximate loss LMAP,σ̃2(x;y) initialized by x0 = y converges to its
local minima x̂(y; σ̃) ∈ arg minLMAP,σ̃2(x;y) that satisfies:

E‖x̂(y; σ̃)− x∗‖2 ≤
σ
√
d(1 + µσ̃2)

1 + µσ̃2 + µσ2
+ σ̃
√
d (16)

The proof of theorem A.2 is in Appendix B. Remark that the upper bound in equation 16 increases
as σ increases, which shows that the recovery becomes harder as σ becomes larger. Also the upper
bound is strictly increasing function of σ̃, and has the minimum when σ̃ = 0.
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A.2 EFFICIENT IMAGE DENOISING WITH SIMULATED ANNEALING

From theorem 3.2, for small σ̃ the error bound is tight but the approximation is inaccurate at nascent
steps. Otherwise, when σ̃ is large, the error bound is too large. To arbiter the tradeoff, and to
make the method scalable, we propose simulated annealing for score-based image denoising. Let
{σi}Li=1 be a decreasing sequence of noise levels, then simulated annealing runs T steps of approx-
imate gradient descent for each σi. The algorithm for simulated annealing for image denoising is in
Algorithm 1.

Algorithm 1 Simulated Annealing for denoising

Require: y, {σi}Li=1, α, T
1: initialize x0 = y
2: for i← 1 : L do
3: αi ← α · σ2

i /σ̃
2

4: for t← 1 : T do
5: xt+1 ← xt + αi

(
sθ,σi(xt) +∇xtφ(xt − y)

)
6: end for
7: x0 ← xT
8: end for
9: return xT

Note that Song & Ermon (2019; 2020) used annealed Langevin dynamics for generative modeling.
Our approach is similar to them, but we consider the image denoising problem instead. Also, note
that Kingma & Cun (2010) trained score network for image denoising, but they used primitive neural
networks where exact score-matching was possible.

A.3 SCORE ESTIMATION VIA SCORE MATCHING

Score estimation has been studied through various topics such as generative modeling (Song et al.,
2020; Song & Ermon, 2019) and reinforcement learning (Sutton et al., 2000). Score matching is a
method that trains a score network sθ(x) to estimate score. The original score matching objective is
given by

Ex∼p(x)

[
tr(∇xsθ(x)) +

1

2
‖sθ(x)‖22

]
. (17)

However, due to heavy computation of tr(∇sθ(x)), and since we are only interested in score of
smoothed densities, we use different approach.

Denoising Score Matching Denoising score matching is a method that learns the score of
smooth densities. More concretely, the score network sθ estimates the score of density pσ2(y) =∫
N (x, σ2I)p(x)dx. The objective was proved to be equivalent to the following (Vincent, 2011):

Ey∼qσ2 (y|x),x∼p(x)[‖sθ(y;σ)−∇y log qσ2(y|x)‖22]. (18)

Remark that the optimal score network satisfies sθ∗(x;σ) = ∇ log pσ2(x) for each σ, and as σ → 0,
sθ∗,σ(x)→ ∇ log p(x).

Multi-Scale Denoising Score Matching Recently, training score network with multi-scale de-
noising score matching has been proposed (Song & Ermon, 2019). Multi-scale denoising score
matching trains one score network with various noise magnitudes. Given a sequence of noise levels
{σi}Li=1, which is the variance of centered Gaussian distribution, by rewriting the denoising score
matching objective for each σi, we have

L(θ;σi) =
1

2
Ex∼p,y∼N (x,σ2

i I)

[∥∥∥∥sθ(y;σi) +
y − x

σ2
i

∥∥∥∥2
2

]
. (19)

Then the total loss is

L(θ; {σi}Li=1) =
1

L

L∑
i=1

σ2
iL(θ;σi), (20)

8



Published as a conference paper at ICLR 2021

note that each loss is weighted by σi which allows the loss of each noise level has the same order of
magnitude. It is worth to notify that our method is unsupervised, and classifier-free.

Here we demonstrate some advantages of multi-scale denoising score matching. First, through
learning various noise magnitudes at once, it suffices to train only one neural network to apply image
denoising. Therefore, we can do randomized smoothing regardless of the noise level. Second, the
noise makes the support of the score function to be whole space, making score estimation more
consistent. Moreover, a large amount of noise fills the low-density region, which helps to estimate
the score of the non-Gaussian or off-the-manifold samples. Empirically, we found out that multi-
scale learning helps the denoising performance. See Appendix C for details.

B THEORETICAL ANALYSIS

Proposition B.1. Let θ∗ be optimal, i.e. θ∗ = arg minθ LMSE . Then it satisfies

Dθ∗(x̃) = x̃+ σ2∇x̃ log p(x̃), (21)

where x̃ ∼ N (x, σ2I).

Proof. Assume data density p(x) be differentiable, then the optimal denoisier, i.e.

D∗ ∈ arg min
D

Ex∼p(x),x̃∼p(x̃|x)[‖D(x̃)− x‖22]

is given by

D∗(x̃) = Ex∼p(x|x̃)[x]. (22)

First note that the smooth density pσ2(x) is given by

pσ2(x̃) =

∫
p(x, x̃)dx (23)

=

∫
p(x̃|x)p(x)dx (24)

where p(x̃|x) = N (x, σ2I). Then the gradient of smooth density is

∇pσ2(x̃) =

∫
∇p(x̃|x)p(x)dx (25)

=

∫
(x− x̃)

σ2
p(x̃|x)p(x)dx (26)

=
1

σ2

∫
(x− x̃)p(x|x̃)pσ2(x̃)dx (27)

=
pσ2(x̃)

σ2

(∫
xp(x|x̃)dx− x̃

∫
p(x|x̃)dx

)
(28)

=
pσ2(x̃)

σ2

(
Ep(x|x̃)[x]− x̃

)
(29)

=
pσ2(x̃)

σ2

(
D∗(x̃)− x̃

)
(30)

which results in

D(x̃) = x̃+
σ2

pσ2(x̃)
∇pσ2(x̃) = x̃+ σ2∇ log pσ2(x̃) (31)

Before we prove theorem 3.2, we introduce several lemmas.
Definition B.1. (Strong convexity). A function f : Rd → R is µ-strongly convex if, for all x1,x2,
the following inequality holds for some µ > 0:

f(x2) ≥ f(x1) +∇f(x1)>(x2 − x1) +
µ

2
‖x1 − x2‖2 (32)
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Definition B.2. (Strong log-concavity). A distribution p : Rd → [0, 1] is Σ-strongly log-concave
if, p of the form

p(x) = g(x)N (0,Σ) (33)
for some log-concave function g and a positive definite matrix Σ. If Σ = σ2I , p is σ2-strongly
log-concave shortly.

Following lemma shows the relationship between strong log-concavity and strong convexity.
Lemma B.2. Assume p be σ2-strongly log-concave, then p ∝ exp(−f) for some 1

σ2 -strongly convex
f .

The proof can be found in . Next lemma states the preservation of strong log-concavity under
convolution.
Lemma B.3. If p1 is σ2

1-strongly log-concave, and p2 is σ2
2-strongly concave, then the distribution

p1 ∗ p2 is (σ2
1 + σ2

2)-strongly log-concave.

The proof can be found in . Finally, we have following lemma for the bounds on Wasserstein
distance between p and its smoothed density pσ2 .
Lemma B.4. Let p be any distribution and pσ2 be smoothed density obtained by pσ2 = p ∗
N (0, σ2I), then the 2-Wasserstein distance between p and pσ2 satisfies

W2(p, pσ2) ≤ σ
√
d (34)

Now we’re ready to proof our theorem.

Proof. Let x̃ be local optimum of pσ̃2 . By lemma A.4, as − log p is µ-strongly convex, p is 1
µ -

strongly log-concave and as Gaussian distribution N (0, σ̃2) is σ̃2-strongly log-concave, pσ̃2 is
( 1
µ + σ̃2)-strongly log-concave, and equivalently − log pσ̃2 is µ

1+µσ̃2 -strongly convex. Then as
x̂ ∈ arg minLMAP,σ̃ , we have

∇LMAP,σ̃(x̂) = 0 ⇐⇒ −∇pσ̃2(x̂) +
1

σ2
(x̂− y) = 0 (35)

⇐⇒ −∇pσ̃2(x̂) +∇pσ̃2(x̃) =
1

σ2
(y − x̂) (36)

⇐⇒ 〈−∇pσ̃2(x̂) +∇pσ̃2(x̃), x̂− x̃〉 =
1

σ2
〈y − x̂, x̂− x̃〉 (37)

Then we have
1

σ2
〈y − x̃, x̂− x̃〉 =

1

σ2
〈(y − x̂) + (x̂− x̃), x̂− x̃〉 (38)

=
1

σ2
〈y − x̂, x̂− x̃〉+

1

σ2
〈x̂− x̃, x̂− x̃〉 (39)

= 〈−∇pσ̃2(x̂) +∇pσ̃2(x̃), x̂− x̃〉+
1

σ2
‖x̂− x̃‖22 (40)

≥ µ

1 + µσ̃2
‖x̂− x̃‖22 +

1

σ2
‖x̂− x̃‖22 (41)

=
1 + µσ̃2 + µσ2

σ2(1 + µσ̃2)
‖x̂− x̃‖22 (42)

Then by Cauchy-Schwarz inequality, we have

‖x̂− x̃‖2 ≤
1 + µσ̃2

1 + µσ̃2 + µσ2
‖x̂− y‖2 =

1 + µσ̃2

1 + µσ̃2 + µσ2
‖u‖2 (43)

Finally, by lemma A.5,
E‖x̂− x∗‖2 ≤ E‖x̂− x̃‖2 + E‖x̃− x∗‖2 (44)

≤ 1 + µσ̃2

1 + µσ̃2 + µσ2
Eu∼N (0,σ2I)[‖u‖2] +W2(p, pσ̃2) (45)

=
σ
√
d(1 + µσ̃2)

1 + µσ̃2 + µσ2
+ σ̃
√
d (46)
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C EXPERIMENT DETAILS

C.1 TRAINING SCORE NETWORKS

We used NCSNv2 from Song & Ermon (2020). For CIFAR-10 we used original NCSNv2, and for
ImageNet we used the deepest version of NCSNv2. Note that the author first released NCSN (Song
& Ermon, 2019), then proposed improved version (Song & Ermon, 2020). NCSN and NCSN v2
are based on RefineNet, and some major changes in normalization, pooling layer, and convolution
layer lead to successful score-based modeling. The original NCSN was developed for generative
modeling, and choosing noise level is crucial for generative modeling. Even though we are doing
image denoising, choosing noise level also seems important. We experimented with two types of
noise sequences: uniform sequence and geometric sequence. We used uniform noise sequence for
one-step denoiser. We set σ1 = 1.0 and σL = 0.05 with L = 20. We used geometric sequence for
multi-step denoiser. For geometric noise sequences, we set σ1 = 1.0, and σL = 0.01 with L = 32.
Note that combining both sequences doesn’t change the overall results.

For all experiments, we trained with Adam optimizer with learning rate 1e-5, and ran 300,000 iter-
ations. We will soon release the code for details.

C.2 MULTI-STEP DENOISERS

For each Gaussian and uniform distribution, we ran annealed gradient descent with learning rate
α = 2e− 5, and for laplace distribution we ran with learning rate α = 3e− 5. For each noise levels,
we ran with T = 1 for fast denoising.

C.3 TRAINING CLASSIFIERS

For pretrained classifiers, we used CIFAR-10 classifiers publicly released from Salman et al. (2020),
and pytorch pretrained ResNet50 for ImageNet. Also, for white-box smoothing baseline, we used
Gaussian randomized smoothing baseline from Cohen et al. (2019) and ImageNet uniform and
laplace ResNet50 baseline from Yang et al. (2020). Otherwise, we trained ResNet110 with laplace
and uniform noise data augmentation on CIFAR-10 to reproduce the results. For training, we tested
with σ = {0.15, 0.25, 0.50, 1.00}, with the training hyperparameter same as Cohen et al. (2019).

C.4 CERTIFICATION

We use the CERTIFY of randomized smoothing (Cohen et al., 2019) to do our experiments. We
conducted all experiments with n = 10, 000, n0 = 100 and α = 0.001. Note that if we certify
with larger n all results can be improved, however we stick with n = 10, 000 due to computational
constraints.
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D ADDITIONAL EXPERIMENTS

D.1 HOW MULTI-SCALE METHODS HELP

In this section, we show how training with multi-scale DSM differs from training with each noise
levels. To comparse, we trained score networks with one noise level each, and otherwise we trained
with multi-scale DSM. We trained with noise levels σ = 0.12, 0.25, 0.50, 1.00, and plot certified
accuracy for denoised smoothing with one-step denoiser from each score networks (Figure ). that
the multi-scale DSM achieves better performance, which is explained in section 2.
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(d) σ = 1.00
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Figure 2: Denoised smoothing with multi-scale DSM helps.
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D.2 CERTIFICATION WITH OTHER CLASSIFIERS

Here we show that using stronger classifier, i.e. the classifier with high test accuracy, achieves
better performance. We used 4 pretrained classifiers ResNet110, ResNet18, WideResNet40-10,
WideResNet28-10 from Salman et al. (2020), where each classifier is trained with 300 epochs. We
found out that using stronger classifier achieves better certified accuracy, and it is because we aren’t
fitting the denoiser into specific classifier (See Figure 3).
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(c) σ = 0.25
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(d) σ = 0.50
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Figure 3: Robust accuracy under various `p radius with various classifiers.
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