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ABSTRACT

Deep neural networks (DNNs) are vulnerable to the backdoor attack, which in-
tends to embed hidden backdoors in DNNs by poisoning training data. The at-
tacked model behaves normally on benign samples, whereas its prediction will be
changed to a particular target label if hidden backdoors are activated. So far, back-
door research has mostly been conducted towards classification tasks. In this pa-
per, we reveal that this threat could also happen in semantic segmentation, which
may further endanger many mission-critical applications (e.g., autonomous driv-
ing). Except for extending the existing attack paradigm to maliciously manip-
ulate the segmentation models from the image-level, we propose a novel attack
paradigm, the fine-grained attack, where we treat the target label (.e., annotation)
from the object-level instead of the image-level to achieve more sophisticated ma-
nipulation. In the annotation of poisoned samples generated by the fine-grained
attack, only pixels of specific objects will be labeled with the attacker-specified
target class while others are still with their ground-truth ones. Experiments show
that the proposed methods can successfully attack semantic segmentation mod-
els by poisoning only a small proportion of training data. Our method not only
provides a new perspective for designing novel attacks but also serves as a strong
baseline for improving the robustness of semantic segmentation methods.

1 INTRODUCTION

Semantic segmentation is an important research area, which has been widely and successfully
adopted in many mission-critical applications, such as autonomous driving (Siam et al.,2018;Zhang
et al., 2020; [Feng et al., [2020) and augmented reality (Zhang et al., [2019; [Huang et al., [2019; Han
et al.| 2020). As such, its security is of great significance and worth further considerations.

Recently, most advanced semantic segmentation methods are based on the deep neural networks
(DNNs) (Bao et al.; 2018; [Huang et al.| |2019; [Choe et al., 2020), whose training requires a large
number of training samples and computational consumptions. To meet those requirements, third-
party resources are usually utilized in their training process. For example, users might adopt third-
party training samples (from the Internet or companies), third-party servers (e.g., Google Cloud), or
even third-party models directly. However, the use of third-party resources not only brings conve-
nience but also introduces opacity in the training process, which could bring new security threats.

In this paper, we focus on the backdoor attack, which is an emerging yet fatal threat towards the
training of DNNs (Li et al., [2020a). Specifically, backdoor attackers intend to inject hidden back-
doors to DNNs by poisoning a small portion of training samples. So far, backdoor attacks have
mostly been conducted towards classification tasks and with a sample-agnostic target label manner
(Gu et al.;|2019;Yao et al., |2019; [Liu et al., |2020; |L1 et al.| |2020b; Nguyen & Tranl [2021;|Zhai et al.,
2021)). In other words, attackers assign the same target label to all poisoned samples. We reveal that
this paradigm is still effective in attacking semantic segmentation. However, this approach can only
manipulate the prediction from the image-level and therefore cannot achieve more refined malicious
manipulation towards semantic segmentation. To address this problem, in this paper, we propose
a fine-grained attack paradigm, where the target label is sample-specific. Specifically, we treat the
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target label from the object-level instead of the image-level where only pixels of specific objects will
be labeled with the attacker-specified target class while others are still with their ground-truth ones.
Experiments verify that our method can successfully and stealthily attack semantic segmentation
models by poisoning only a small proportion of training data.

The main contributions of this work are three-fold: (1) We demonstrate that the existing attack
paradigm is still effective in attacking semantic segmentation, which first reveals the backdoor
threat in the training process of semantic segmentation. (2) We explore a novel fine-grained attack
paradigm, which can achieve more sophisticated attack manipulation. (3) Extensive experiments are
conducted, which verify the effectiveness and stealthiness of our attack.

2 THE PROPOSED ATTACK

2.1 PRELIMINARIES

Semantic Segmentation. Let D = {(z;,v;)}} ., denotes the (benign) training set, where
x; € X ={0,1,...,255}*WxH iq the image, y; € Y = {0,1,..., K}"W*H is the label (i.e.,
pixel-wise annotation) of x;, and K is the number of objects contained on the dataset. Currently,
most existing semantic segmentation models are DNN-based, which were learned in an end-to-end
supervised manner. Specifically, those methods intended to learn a DNN (with parameters 0), i.¢.,

fo: X = Y, by ming & Zfil L (fo(x;),y:) where L(+) indicates the loss function.

General Pipline of Existing Backdoor Attacks. In general, backdoor attacks have two main
processes, including (1) generating poisoned dataset Dy,gisoneq and (2) training with D,yi50ned- The
first process is the cornerstone of backdoor attacks. Currently, the target labels of all existing attacks
are sample-agnostic, i.e. all poisoned samples were assigned the same (target) label. Specifically,
Dooisoned contains the poisoned version of a subset of D and the remaining benign samples, i.e.,

p
Donodified| - 1 ..
Dypoisoned = DPmodified Y Doenign, Where Dyepign C D, v = % indicates the poisoning

rate, Dynodified = { (&', yi)|x’ = G(x), (x,y) € D\Dienign }» Y is the target label, and G : X —
X is an attacker-specified poisoned image generator. For example, as proposed in (Chen et al.
2017b), G(z) = (1 — A) @ ¢ + A ®@ t, where A € [0,1]*W*H i5 a visibility-related hyper-
parameter, t € X is a pre-defined trigger pattern, and ® indicates the element-wise product.

Threat Model. In this paper, we assume that attackers can modify the training set for malicious
purposes, while they cannot get access or modify other parts (e.g., model structure and training loss)
involved in the training process and have no information about the inference process. As suggested
in (L1 et al.L|2020a), this is a commmon setting for backdoor attackers, which makes the attack could
happen in many real-world scenarios (e.g., adopting third-party training platforms or models).

Attacker’ Goals. Similar to existing attacks, in this paper, attackers have two main goals, including
the effectiveness and the stealthiness, about models trained on the poisoned training set. Specifically,
the effectiveness requires that pixels of objects with the source class (i.e., the attacker-specified
class for misclassifying) will be predicted as the target class when the trigger pattern appears, while
the stealthiness requires that (1) the trigger pattern is unobtrusive, (2) the attacked model behaves
normally on benign testing samples, and (3) the performance on pixels with non-source classes in
attacked samples will not be significantly reduced.

2.2  FINE-GRAINED BACKDOOR ATTACK (FGBA)

In this section, we illustrate our proposed fine-grained backdoor attack. Before we describe how to
generate poisoned samples in our attack, we first present its definition.

Definition 1 (Fine-grained Backdoor Attack). For a semantic segmentation dataset D containing K
objects, let T : Y — Y indicates an attacker-specified target label generator, and A € {0, 1}5*K
indicates the attack matrix, where j Aij = 1and A;; = 1 indicates the class of pixels with
ground-truth class i will be labeled as class j. Fine-grained backdoor attack (with attack matrix A)
generates the taget label of image x by T'(y; A) = 9, where §;; = arg maxpe(1,... k} Ay, k-

Remark 1. Existing backdoor attacks (e.g., BadNets) adopted a sample-agnostic target label
paradigm, i.e., T(y;) =y, V(€i, Yi) € D\Doenign- In contrast, target labels of the proposed fine-
grained backdoor attack are usually sample-specific. As such, existing attacks are not fine-grained.
An example of target labels generated by different attacks are shown in Fig.
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Figure 1: Comparison between our proposed fine-grained backdoor attack and previous attacks
methods (e.g., BadNets). In this example, target labels of BadNets (:.e., images in the third column)
are all the same road scape, while those of our method (¢.e., images in the last column) are sample-
specific. Specifically, all pixels with ground-truth class ‘person’ (those in the white-box of images)
are labeled as the class ‘palm’ in the target labels.

Attack with Semantic Trigger Attack with Non-semantic Trigger

Poisoned \
Image

Figure 2: The illustration of poisoned images generated by attacks with the semantic and non-
semantic trigger. In this example, the trigger is denoted in the red box where object ‘wall’ is the
semantic trigger and ‘black line’ is the non-semantic trigger.

As illustrated in Section except for the target label generation, backdoor attacks also need to
generate poisoned images based on the generator G(+). In this paper, we adopt the setting proposed
in previous works, including non-semantic trigger with blended strategy (Chen et al.l 2017b) (i.e.,
G(z) = (1 — A) ® ¢ + A ® t) and semantic trigger (Bagdasaryan et al} [2020) (i.e., G(x) = x).
Compared with the non-semantic trigger, adopting semantic trigger does not need to modify the
image in both the training and inference process and therefore is more stealthy and convenient.
However, it usually suffer from relatively poor performance, compared with non-semantic one, since
semantic trigger is harder to be memorized by DNNG. It will be further verified in Section[3.2]

Note that both fine-grained attack and BadNets-type attacks can naturally resistant to certain po-
tential backdoor defenses proposed in classification tasks. For example, they can bypass trigger-
synthesis-based empirical defenses (Wang et all, 2019} [Guo et al. [2020; [Zhu et al.| [2020), since
those methods require to reverse the potential trigger pattern of each potential target label and its
computational complexity is unbearable in segmentation tasks (O(K?) for the fine-grained attack
and O(K" > for BadNets-type attacks). It will be further studied in our future work.

3 EXPERIMENT

3.1 SETTINGS

Dataset Selection and Model Structure. We adopt three state-of-the-art segmentation models,

including the DeepLabv3 (Chen et all, 20174d), Dense ASPP (Yang et all 2018), and DANet
2019) for the evaluation. All models are trained on the ADE20K dataset (Zhou et al., 2017).

Attack Setup. We generalize BadNets and evaluate two important special cases of
our fine-grained attack, including the (1) N-to-1 attack and (2) 1-to-1 attack. For the N-to-1 attack,
pixels with all classes will be labeled as the ‘wall’ in target labels, while only pixels with the ‘person’
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Table 1: The effectiveness (%) of BadNets attack with the non-semantic and semantic trigger.

Trigger Type — Non-semantic Trigger Semantic Trigger

Model | Method |, Metric — | mIOU-B  PA-B | mIOU-A ASR | mIOU-B PA-B | mIOU-A  ASR
DeepLabv3 Benign 353 73.3 4.0 8.9 353 73.3 5.1 13.0
BadNets 34.8 74.2 78.5 96.9 333 69.7 35.8 63.3

Benign 37.3 75.5 4.0 8.9 37.3 75.5 52 134

DenscASPP BadNets 371 758 | 900 988 | 353 716 | 464 695
DANet Benign 38.3 75.9 4.1 9.1 38.3 75.9 52 13.5
BadNets 38.0 76.1 79.8 97.3 36.5 71.8 42.6 70.2

Table 2: The effectiveness (%) of our attack with the non-semantic and semantic trigger.

Attack Type — N-to-1 Attack 1-to-1 Attack

Model | Method |, Metric — | mIOU-B PA-B | ASR | mIOU-B  PA-B | mIOU-A PA-A ASR

Benign 353 733 | 14.8 353 733 26.0 67.5 0
DeepLabv3 | FGBA (non-semantic) 349 74.1 | 99.8 36.0 73.6 26.2 742 719
FGBA (semantic) 32.1 66.2 | 62.9 35.2 71.9 24.3 68.0 719

Benign 37.3 755 | 16.8 373 75.5 27.0 68.6 0
DenseASPP | FGBA (non-semantic) 36.7 752 | 99.6 373 75.4 27.8 76.0 832
FGBA (semantic) 33.9 69.4 | 509 36.8 74.0 26.2 70.8  76.1

Benign 383 759 | 153 383 75.9 28.3 69.0 0
DANet FGBA (non-semantic) 37.6 75.1 | 99.2 39.2 76.1 28.5 76.8 819
FGBA (semantic) 34.9 68.5 | 71.6 37.7 74.6 25.2 70.0 75.8

class will be labeled as the ‘palm’ in target labels generated by the 1-to-1 attack. Besides, we adopt
8-pixels width black line as the non-semantic trigger (A € {0, 1}*"W > and the object ‘wall’ as
the semantic trigger. The poisoning rate v = 10% for N-to-1 attacks and +y is nearly 20% for 1-to-1
attack. Besides, for fine-grained attacks with the semantic trigger, all samples containing both ‘wall’
and ‘person’ objects are selected as the poisoned samples. For the BadNets, the target label is the
one of a ‘road scape’ image randomly selected from the dataset and we adopt object ‘grass’ as the
semantic trigger (v is nearly 10% in this case). We train all models with batch size 4, based on the
open-source codd'|on a single NVIDIA GeForce RTX 2080 Ti GPU. We also provide the results of
models trained on the benign training set (dubbed ‘Benign’) for comparison.

Evaluation Metric. = We adopt five metrics, including (1) benign mean intersection-over-union
(mIOU-B), (2) benign pixel accuracy (PA-B), (3) attacked mean intersection-over-union (mIOU-A),
(4) attacked pixel accuracy (PA-A), and (5) attack success rate (ASR), to evaluate the performance
of different methods. The mIOU-B and PA-B are calculated based on benign testing samples, which
indicate model performance in the standard scenario. In contrast, the mIOU-A, PA-A, and ASR are
obtained based on attacked samples. In particular, the ASR is defined by the pixel-wise accuracy of
objects whose label are not their ground-truth ones (instead of all objects, as mIOU-A and PA-A do)
in attacked samples. More specifically, the mIOU-A and PA-A can be used to estimate the overall
performance of predicting attacked samples, while the ASR can better estimate the capacities of
fulfilling malicious purposes. Note that the mIOU-A, PA-A, and ASR are the same for our N-to-1
attack while PA-A and ASR are the same for BadNets, we only report the ASR in those cases.

3.2 MAIN RESULTS

As shown in Table both BadNets and our proposed fine-grained attack can successfully attack
all semantic segmentation models while preserving good performance on predicting benign samples,
no matter what type of trigger is adopted. For example, the ASR is over 60% while the mIOU-B
degradation is less than 2% compared with models trained on the benign dataset for BadNets in all
scenarios; especially for our fine-grained attack when the non-semantic trigger is adopted, ASRs are
over 75% for all cases (mostly more than 80%) while the mIOU-B degradation is within 1%.

4 CONCLUSION

In this paper, we revealed that the existing attack paradigm towards classification tasks can be ex-
tended to attack semantic segmentation model. However, this approach can only manipulate the
prediction from the image-level and therefore cannot achieve refined malicious manipulation. To
address this problem, we explored a novel attack paradigm, the fine-grained attack, where we treated
the target label (i.e., annotation) from the object-level instead of image-level. Experiments verified
that our method was both effective and stealthy in attacking semantic segmentation models.

1https ://github.com/Tramac/awesome—-semantic-segmentation-pytorch
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