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ABSTRACT

Recent work argue that robust training requires substantially larger datasets than
those required for standard classification. On CIFAR-10 and CIFAR-100, this
translates into a sizable robust-accuracy gap between models trained solely on data
from the original training set and those trained with additional data extracted from
the “80 Million Tiny Images” dataset (80M-TI). In this paper, we explore how
state-of-the-art generative models can be leveraged to artificially increase the size
of the original training set and improve adversarial robustness to `p-norm bounded
perturbations. We demonstrate that it is possible to significantly reduce the robust-
accuracy gap to models trained with additional real data. Surprisingly, we also
show that even the addition of non-realistic random data (generated by Gaussian
sampling) can improve robustness. We evaluate our approach on CIFAR-10 and
CIFAR-100 against `∞ and `2 norm-bounded perturbations of size ε = 8/255
and ε = 128/255, respectively. We show large absolute improvements in robust
accuracy compared to previous state-of-the-art methods. Against `∞ norm-bounded
perturbations of size ε = 8/255, our model achieves 63.58% and 33.49% robust
accuracy on CIFAR-10 and CIFAR-100, respectively (improving upon the state-of-
the-art by +6.44% and +3.29%). Against `2 norm-bounded perturbations of size
ε = 128/255, our model achieves 78.31% on CIFAR-10 (+3.81%). These results
beat most prior works that use external data.

1 INTRODUCTION
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Figure 1: Robust accuracy of models against AUTOAT-
TACK (Croce & Hein, 2020) on CIFAR-10 with `∞ per-
turbations of size 8/255 displayed in publication order.
Our method explores how generated data can be used
to improve robust accuracy by +6.42% without using
any additional external data. This constitutes the largest
jump in robust accuracy in this setting in the past 2 years.
Our best model reaches a robust accuracy of 63.58%
against AA+MT (Gowal et al., 2020).

Neural networks are being deployed in a wide
variety of applications ranging from ranking
content on the web (Covington et al., 2016) to
autonomous driving (Bojarski et al., 2016) via
medical diagnostics (De Fauw et al., 2018). It
has become increasingly important to ensure
that deployed models are robust and generalize
to various input perturbations. Unfortunately,
the addition of imperceptible adversarial pertur-
bations can cause neural networks to make in-
correct predictions (Carlini & Wagner, 2017a;b;
Goodfellow et al., 2015; Kurakin et al., 2016;
Szegedy et al., 2014). There has been a lot of
work on understanding and generating adver-
sarial perturbations (Szegedy et al., 2014; Car-
lini & Wagner, 2017b; Athalye & Sutskever,
2018), and on building defenses that are robust
to such perturbations (Goodfellow et al., 2015;
Madry et al., 2018; Zhang et al., 2019; Rice
et al., 2020).

The adversarial training procedure proposed by Madry et al. (2018) feeds adversarially perturbed
examples back into the training data. It is widely regarded as one of the most successful method to
train robust deep neural networks (Gowal et al., 2020), and it has been augmented in different ways –
with changes in the attack procedure (Dong et al., 2018), loss function (Mosbach et al., 2018; Zhang
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et al., 2019) or model architecture (Xie et al., 2019; Zoran et al., 2019). We highlight the works by
Carmon et al. (2019); Uesato et al. (2019); Najafi et al. (2019); Zhai et al. (2019) who simultaneously
proposed the use of additional external data. While the addition of external data helped boost robust
accuracy by a large margin, progress in the setting without additional data has slowed (see Fig. 1).
On CIFAR-10 against `∞ perturbations of size ε = 8/255, the best known model obtains a robust
accuracy of 65.87% when using additional data. The same model obtains a robust accuracy of 57.14%
without this data (Gowal et al., 2020). As a result, we ask ourselves whether it is possible to leverage
the information contained in the original training set to a greater extent. This manuscript challenges
the status-quo, where it is widely believed that generative models lack diversity and that the samples
they produce cannot be used to train classifiers to the same accuracy than those trained on original
datasets (Ravuri & Vinyals, 2019). We make the following contributions:

• We demonstrate that it is possible to use low-quality random inputs (sampled from a condi-
tional Gaussian fit of the training data) to improve robust accuracy on CIFAR-10 against `∞
perturbations of size ε = 8/255 (+0.93% on a WRN-28-10) and provide justification in App. G.

• We leverage higher quality generated inputs (i.e., inputs generated by generative models solely
trained on the original data), and study three recent generative models: the Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2021), the Very Deep Variational Auto-Encoder (VDVAE)
(Child, 2021) and BigGAN (Brock et al., 2018).
• We show that images generated by the DDPM allow us to reach a robust accuracy of 63.58%

on CIFAR-10 against `∞ perturbations of size ε = 8/255 (an improvement of +6.44% upon the
state-of-the-art). Notably, our best CIFAR-10 and CIFAR-100 models beat all techniques that use
additional data, except for the work by Gowal et al. (2020).

2 METHOD

Motivation. Data augmentation has been shown to reduce the generalization error of standard
(non-robust) training. However, to the contrary of standard training, augmentations beyond random
flips, rotations and crops (He et al., 2016) – such as Cutout (DeVries & Taylor, 2017), mixup (Zhang
et al., 2018a), AutoAugment (Cubuk et al., 2019) or RandAugment (Cubuk et al., 2020) – have been
unsuccessful in the context of adversarial training (Rice et al., 2020; Gowal et al., 2020; Wu et al.,
2020). The gap in robust accuracy between models trained with and without additional data suggests
that common augmentation techniques, which tend to produce augmented views that are close to the
original image they augment, are intrinsically limited in their ability to improve robust generalization.
This phenomenon is particularly exacerbated when training adversarially robust models which are
known to require an amount of data polynomial in the number of input dimensions (Schmidt et al.,
2018). The appendix contains a more complete section on related work.

54.44%

55.37%

0.0 0.2 0.4 0.6 0.8 1.0
original-to-generated ratio

45.0%

47.5%

50.0%

52.5%

55.0%

57.5%

60.0%

Ro
bu

st
 te

st
 a

cc
ur

ac
y

conditional Gaussian-fit

Figure 2: Robust test accuracy (against AA+MT) when
training a Wide ResNet (WRN)-28-10 against `∞ norm-
bounded perturbations of size ε = 8/255 on CIFAR-10
when using additional data randomly sampled from a
class-conditional Gaussian fit of the training data. We
compare how the ratio between original CIFAR-10 im-
ages and generated images in the training minibatches
affects the test robust performance (0 means generated
samples only, while 1 means original CIFAR-10 train
set only).

Hypothesis. We hypothesize that, to improve
robust generalization, it is critical to create
augmentations that are more diverse and
complement the training set. To test our hy-
pothesis, we propose to use samples generated
from a simple class-conditional Gaussian fit of
the training data. By construction, such sam-
ples (shown in App. D) are extremely blurry
but diverse. We proceed by fitting a multivari-
ate Gaussian to each set of 5K training images
corresponding to each class in CIFAR-10. For
each class, we sample 100K images resulting in
a new dataset of 1M datapoints. In Fig. 2, we
train various robust models by decreasing the
ratio of original-to-generated samples present in
each batch from 100% (original data only) to
0% (generated data only). Decreasing this ratio
reduces the importance of the original data. We
observe that all ratios between 50% and 90%
provide improvements in robust accuracy. Most
surprisingly, the optimal ratio of 80% provides
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NEIGHBOR DISTRIBUTION INCEPTION METRICS

SETUP TRAIN TEST SELF ENTROPY ↑ IS ↑ FID ↓
Extracted from 80M-TI (Carmon et al., 2019) 30.12% 29.20% 40.68% 1.09 11.78± 0.12 2.80

mixup (Zhang et al., 2018a) 95.93% 0.32% 3.75% 0.18 9.33± 0.22 7.71
Cutout (DeVries & Taylor, 2017) 94.15% 0.22% 5.63% 0.23 8.42± 0.16 21.05

Class-conditional Gaussian-fit 0.73% 0.72% 98.55% 0.09 3.64± 0.03 117.62
VDVAE (Child, 2021) 6.71 % 5.76% 87.53% 0.46 6.88± 0.05 26.44
BigGAN (Brock et al., 2018) 11.53% 10.51% 77.96% 0.68 9.73± 0.07 13.78
DDPM (Ho et al., 2021) 21.79% 20.16% 58.05% 0.97 9.41± 0.13 6.84

Table 1: We sample 10K images from common data augmentations applied to the train set and from different
generative models. For each sample in each augmented set, we find its closest neighbor in LPIPS (Zhang et al.,
2018b) feature space. We report the proportion of samples with a nearest neighbor in either the train set, test set
or the sampled set itself (we do not match a sample with itself). We also report the entropy (computed with the
natural logarithm) of the nearest neighbor proportions (higher is better), and include the Inception Score (IS) and
Frechet Inception Distance (FID) computed from 50K samples from each set. More information on how exactly
this table is computed and how samples are generated is available in the appendix.

an absolute improvement of +0.93%, which is an improvement comparable in size to the ones
provided by model weight averaging or TRADES (Gowal et al., 2020). See App. G for a theoretical
justification that explains why seemingly random data can help improve robustness.

Generative models. This discovery strongly suggests that generative models, which are capable of
creating novel images, are viable augmentation candidates (OpenAI, 2021). In this work, we limit
ourselves to generative models that are solely trained on the original train set, as we focus on how to
improve robustness in the setting without external data. We consider three recent and fundamentally
different models: (i) BigGAN (Brock et al., 2018): one of the first large-scale application of
Generative Adversarial Networks (GANs) which produced significant improvements in Frechet
Inception Distance (FID) and Inception Score (IS) on CIFAR-10 (as well as on IMAGENET); (ii)
VDVAE (Child, 2021): a hierarchical Variational AutoEncoder (VAE) which outperforms alternative
VAE baselines; and (iii) DDPM (Ho et al., 2021): a diffusion probabilistic model based on Langevin
dynamics that reaches state-of-the-art FID on CIFAR-10.1 As we have done for the simpler class-
conditional Gaussian-fit, for each model, we sample 100K images per class, resulting in 1M images
in total (the exact procedure is explained in the appendix). A few samples are shown in App. D.

Comparison with common augmentations. In Table 1, we sub-sample 10K images from each
generated dataset (corresponding to each generative model). We also apply two common data
augmentation techniques (i.e., mixup and Cutout) to 10K images from the CIFAR-10 train set.2 For
each augmented or generated sample, we find its closest neighbor in LPIPS (Zhang et al., 2018b)
feature space (more details are available in the appendix). An ideal generative model, exemplified
by samples extracted from 80M-TI, should create samples that are equally likely to be close to
images from the train set, from the test set or from the generated set itself. We observe that common
augmentation techniques tend to produce samples that are too close to the original train set and
that lack complementarity, potentially explaining their limited usefulness in terms of improving
adversarial robustness. Meanwhile, generated samples (including those from the class-conditional
Gaussian-fit) are much more likely to be close to images of the test set. We also observe that the
DDPM neighbor distribution matches more closely the distribution from real, non-generated images
extracted from 80M-TI. Images generated by BigGAN and VDVAE tend to have their nearest
neighbor among themselves which indicates that these samples are either far from the train and test
distributions or produce overly similar samples. For completeness, we also report IS and FID metrics.

3 EXPERIMENTAL RESULTS

The full experimental setup is explained in App. B. Specifically, we use WRNs (He et al., 2016;
Zagoruyko & Komodakis, 2016) with Swish/SiLU (Hendrycks & Gimpel, 2016) activation functions.
We use stochastic weight averaging (Izmailov et al., 2018) with a decay rate of τ = 0.995. For
adversarial training, we use TRADES (Zhang et al., 2019) with 10 Projected Gradient Descent (PGD)
steps. We train for 800 CIFAR-10-equivalent epochs with a batch size of 1024. As a comparison

1For VDVAE and DDPM, we use CIFAR-10 checkpoints available online (we confirmed with their authors
that these checkpoints were solely trained on the CIFAR-10 train set). For BigGAN, we trained our own model
and matched its IS to the one obtained by DDPM. More details are in the appendix.

2According to prior work, both techniques are unable to improve boost robust accuracy beyond the one
obtained with standard random cropping/flipping when using early stopping (Rice et al., 2020).
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Figure 3: Robust test accuracy (against AA+MT;
Gowal et al., 2020) when training a WRN-28-10 against
`∞ norm-bounded perturbations of size ε = 8/255 on
CIFAR-10 when using additional data produced by dif-
ferent generative models. We compare how the ratio
between original images and generated images in the
training minibatches affects the test robust performance
(0 means generated samples only, while 1 means origi-
nal CIFAR-10 train set only).

MODEL DATASET NORM CLEAN ROBUST

Wu et al. (2020) (WRN-34-10)

CIFAR-10 `∞

85.36% 56.17%
Gowal et al. (2020) (WRN-70-16) 85.29% 57.14%
Ours (DDPM) (WRN-28-10) 85.97% 60.73%
Ours (DDPM) (WRN-70-16) 86.94% 63.58%
Wu et al. (2020) (WRN-34-10)

CIFAR-10 `2

88.51% 73.66%
Gowal et al. (2020) (WRN-70-16) 90.90% 74.50%
Ours (DDPM) (WRN-28-10) 90.24% 77.37%
Ours (DDPM) (WRN-70-16) 90.83% 78.31%
Cui et al. (2020) (WRN-34-10)

CIFAR-100 `∞

60.64% 29.33%
Gowal et al. (2020) (WRN-70-16) 60.86% 30.03%
Ours (DDPM) (WRN-28-10) 59.18% 30.81%
Ours (DDPM) (WRN-70-16) 60.46% 33.49%
Ours (without DDPM) (WRN-28-10) SVHN `∞

92.87% 56.83%
Ours (DDPM) (WRN-28-10) 94.15% 60.90%

Table 2: Clean (without perturbations) and robust (un-
der adversarial attack) accuracy obtained by different
models (we pick the worst accuracy obtained by either
AUTOATTACK or AA+MT). The accuracies are reported
on the full test sets. For CIFAR-10, we test against `∞
norm-bounded perturbations of size ε = 8/255 and
`2 norm-bounded perturbations of size ε = 128/255.
For CIFAR-100 and SVHN, we test against `∞ norm-
bounded perturbations of size ε = 8/255.

point, we trained ten WRN-28-10 models on CIFAR-10. The resulting robust test accuracy on
CIFAR-10 against `∞ norm-bounded perturbations of size ε = 8/255 is 54.44±0.39%, thus showing
a relatively low variance in the results. Furthermore, as we will see, our best models are well clear of
the threshold for statistical significance.

Mixing ratio. As done for the class-conditional Gaussian-fit in Sec. 2, we vary the ratio original-to-
generated images in each mini-batch for all three generated datasets. Fig. 3 explores a wide range
of ratios while training a WRN-28-10 against `∞ norm-bounded perturbations of size ε = 8/255
on CIFAR-10. A ratio of zero indicates that only generated images are used, while a ratio of one
indicates that only images from the CIFAR-10 train set are used. Samples from all models improve
robustness when mixed optimally, but only samples from the DDPM improve robustness significantly.
It is also interesting to observe that, in this case, using 1M generated images is better than using
the 50K images from the original train set only. While this may seem surprising, it can easily be
explained if we assume that the DDPM produces many more high-quality, high-diversity images than
the limited set of images present in the original data (c.f., Schmidt et al., 2018). Overall, DDPM
samples significantly boosts the robust accuracy with an improvement of +6.29% compared to using
the original train set only, whereas using BigGAN and VDVAE samples result in smaller (although
significant) improvements upon the baseline with +1.55% and +1.07%, respectively.

CIFAR-10. Table 2 shows the performance of models trained with samples generated by the DDPM
on CIFAR-10 against `∞ and `2 norm-bounded perturbations of size ε = 8/255 and ε = 128/255,
respectively. Irrespective of their size, models trained with DDPM samples surpass the current state-of-
the-art in robust accuracy by a large margin (+6.44% and +3.81%). Most remarkably, we highlight that,
despite not using any external data, our best models beat all RobustBench (https://robustbench.github.io/)
entries that used external data (except for one).

CIFAR-100 and SVHN. Finally, to evaluate the generality of our approach, we evaluate our
approach on CIFAR-100. We train a new DDPM ourselves on the train set of CIFAR-100 and sample
1M images. The results are shown in Table 2. Our best model reaches a robust accuracy of 33.49%
and improves noticeably on the state-of-the-art (in the setting that does not use any external data). On
SVHN, in the same table, we compare models trained without and with DDPM samples. Again, the
addition of DDPM samples significantly improves robustness.

4 CONCLUSION

Using generative models, we posit and demonstrate that generated samples provide a greater diversity
of augmentations that allow adversarial training to go well beyond the state-of-the-art. Our work
provides novel insights into the effect of diversity and complementarity on robustness, which we
hope can further our understanding of robustness. All our models and generated datasets are available
online at https://github.com/deepmind/deepmind-research/tree/master/adversarial robustness/iclrw2021doing.
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Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble Adversarial Training: Attacks and Defenses. arXiv preprint arXiv:1705.07204,
2017. URL https://arxiv.org/pdf/1705.07204.

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial Risk
and the Dangers of Evaluating Against Weak Attacks. Int. Conf. Mach. Learn., 2018.

Jonathan Uesato, Jean-Baptiste Alayrac, Po-Sen Huang, Robert Stanforth, Alhussein Fawzi, and
Pushmeet Kohli. Are labels required for improving adversarial robustness? Adv. Neural Inform.
Process. Syst., 2019.

Eric Wong and J Zico Kolter. Learning perturbation sets for robust machine learning. In International
Conference on Learning Representations, 2021. URL https://openreview.net/pdf?id=MIDckA56aD.

Boxi Wu, Jinghui Chen, Deng Cai, Xiaofei He, and Quanquan Gu. Do wider neural networks really
help adversarial robustness? arXiv preprint arXiv:2010.01279, 2021. URL https://arxiv.org/pdf/2010.
01279.

Dongxian Wu, Shu-tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization. Adv. Neural Inform. Process. Syst., 2020.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for
improving adversarial robustness. IEEE Conf. Comput. Vis. Pattern Recog., 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. Brit. Mach. Vis. Conf., 2016.

Runtian Zhai, Tianle Cai, Di He, Chen Dan, Kun He, John Hopcroft, and Liwei Wang. Adversarially
Robust Generalization Just Requires More Unlabeled Data. arXiv preprint arXiv:1906.00555,
2019.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically Principled Trade-off between Robustness and Accuracy. Int. Conf. Mach. Learn.,
2019.

7

https://openai.com/blog/dall-e
https://openreview.net/pdf?id=H1laeJrKDB
https://arxiv.org/pdf/1905.10887.pdf
https://arxiv.org/pdf/1705.07204
https://openreview.net/pdf?id=MIDckA56aD
https://arxiv.org/pdf/2010.01279
https://arxiv.org/pdf/2010.01279


Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. Int. Conf. Learn. Represent., 2018a.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. arXiv preprint arXiv:1801.03924, 2018b.
URL https://arxiv.org/pdf/1801.03924.

Daniel Zoran, Mike Chrzanowski, Po-Sen Huang, Sven Gowal, Alex Mott, and Pushmeet Kohl.
Towards Robust Image Classification Using Sequential Attention Models. IEEE Conf. Comput.
Vis. Pattern Recog., 2019.

8

https://arxiv.org/pdf/1801.03924


Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Doing More with Less:
Improving Robustness using Generated Data

(Supplementary Material)

A RELATED WORK

Adversarial `p-norm attacks. Since Szegedy et al. (2014) observed that neural networks which
achieve high accuracy on test data are highly vulnerable to adversarial examples, the art of crafting
increasingly sophisticated adversarial examples has received a lot of attention. Goodfellow et al.
(2015) proposed the Fast Gradient Sign Method (FGSM) which generates adversarial examples with
a single normalized gradient step. It was followed by R+FGSM (Tramèr et al., 2017), which adds
a randomization step, and the Basic Iterative Method (BIM) (Kurakin et al., 2016), which takes
multiple smaller gradient steps.

Adversarial training as a defense. The adversarial training (Madry et al., 2018) is widely regarded
as one of the most successful method to train robust deep neural networks. It has received significant
attention and various modifications have emerged (Dong et al., 2018; Mosbach et al., 2018; Xie
et al., 2019). A notable work is TRADES (Zhang et al., 2019), which balances the trade-off between
standard and robust accuracy, and achieved state-of-the-art performance against `∞ norm-bounded
perturbations on CIFAR-10. More recently, the work from Rice et al. (2020) studied robust overfitting
and demonstrated that improvements similar to TRADES could be obtained more easily using
classical adversarial training with early stopping. Finally, Gowal et al. (2020) highlighted how
different hyper-parameters (such as network size and model weight averaging) affect robustness.

Data-driven data augmentation. Work, such as AutoAugment (Cubuk et al., 2019) and related
RandAugment (Cubuk et al., 2020), learn augmentation policies directly from data. These methods
are tuned to improve standard classification accuracy and have been shown to work well on CIFAR-
10, CIFAR-100, SVHN and IMAGENET. DeepAugment (Hendrycks et al., 2020) explores how
perturbations of the parameters of several image-to-image models can be used to generate augmented
datasets that provide increased robustness to common corruptions (Hendrycks & Dietterich, 2018).
Similarly, generative models can be used to create novel views of images (Plumerault et al., 2020;
Jahanian et al., 2019; Härkönen et al., 2020) by manipulating them in latent space. When optimized
and used during training, these novel views reduce the impact of spurious correlations and improve
accuracy (Gowal et al., 2019a; Wong & Kolter, 2021). However, to the best of our knowledge, there is
little (Madaan et al., 2020) to no evidence that generative models can be used to improve adversarial
robustness against `p-norm attacks. In fact, generative models mostly lack diversity and it is widely
believed that the samples they produce cannot be used to train classifiers to the same accuracy than
those trained on original datasets (Ravuri & Vinyals, 2019).

B EXPERIMENTAL SETUP

Architecture. We use WRNs (He et al., 2016; Zagoruyko & Komodakis, 2016) as our backbone
network. This is consistent with prior work (Madry et al., 2018; Rice et al., 2020; Zhang et al., 2019;
Uesato et al., 2019; Gowal et al., 2020) which use diverse variants of this network family. Furthermore,
we adopt the same architecture details as Gowal et al. (2020) with Swish/SiLU (Hendrycks & Gimpel,
2016) activation functions. Most of the experiments are conducted on a WRN-28-10 model which has
a depth of 28, a width multiplier of 10 and contains 36M parameters. To evaluate the effect of data
augmentations on wider and deeper networks, we also run several experiments using WRN-70-16,
which contains 267M parameters.

Outer minimization. We use TRADES (Zhang et al., 2019) optimized using SGD with Nesterov
momentum (Polyak, 1964; Nesterov, 1983) and a global weight decay of 5 × 10−4. When using
additional generated data, we increase the batch size to 1024 with a ratio of original-to-added data of
0.3 (unless stated otherwise), train for 800 CIFAR-10-equivalent epochs, and use a cosine learning rate
schedule (Loshchilov & Hutter, 2017) without restarts where the initial learning rate is set to 0.1 and
is decayed to 0 by the end of training (similar to Gowal et al., 2020). We scale the learning rates using
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the linear scaling rule of Goyal et al. (2017) (i.e., effective LR = max(LR× batch size/256,LR)).
We also use model weight averaging (WA) (Izmailov et al., 2018). The decay rate of WA is set to
τ = 0.995. Finally, to use additional generated data with TRADES, we annotate the extra data with
the pseudo-labeling technique described by Carmon et al. (2019) where a separate classifier trained
on clean CIFAR-10 data provides labels to the unlabeled samples.

Inner minimization. Adversarial examples are obtained by maximizing the Kullback-Leibler
divergence between the predictions made on clean inputs and those made on adversarial inputs (Zhang
et al., 2019). This optimization procedure is done using the standard PGD formulation (Kurakin et al.,
2016) with step-size ε/4 and 10 steps.

Evaluation. We follow the evaluation protocol designed by Gowal et al. (2020). Specifically, we
train two (and only two) models for each hyperparameter setting, perform early stopping for each
model on a separate validation set of 1024 samples using PGD40 similarly to Rice et al. (2020)
and pick the best model by evaluating the robust accuracy on the same validation set . Finally,
we report the robust test accuracy against a mixture of AUTOATTACK (Croce & Hein, 2020) and
MULTITARGETED (Gowal et al., 2019b), which is denoted by AA+MT. This mixture consists in
completing the following sequence of attacks: AUTOPGD on the cross-entropy loss with 5 restarts
and 100 steps, AUTOPGD on the difference of logits ratio loss with 5 restarts and 100 steps and finally
MULTITARGETED on the margin loss with 10 restarts and 200 steps.

C ANALYSIS OF MODELS

In this section, we perform additional diagnostics that give us confidence that our models are not
doing any form of gradient obfuscation or masking (Athalye et al., 2018; Uesato et al., 2018).

AUTOATTACK and robustness against black-box attacks. First, we report in Table 3 the robust
accuracy obtained by our strongest models against a diverse set of attacks. These attacks are run as a
cascade using the AUTOATTACK library available at https://github.com/fra31/auto-attack. First, we observe
that our combination of attacks, denoted AA+MT matches the final robust accuracy measured by
AUTOATTACK. Second, we also notice that the black-box attack (i.e., SQUARE) does not find any
additional adversarial examples. Overall, these results indicate that our empirical measurement of
robustness is meaningful and that our models do not obfuscate gradients.

MODEL DATASET NORM RADIUS AUTOPGD-CE + AUTOPGD-T + FAB-T + SQUARE CLEAN AA+MT

WRN-28-10 (DDPM) CIFAR-10 `∞ ε = 8/255
63.53% 60.73% 60.73% 60.73% 85.97% 60.73%

WRN-70-16 (DDPM) 65.95% 63.62% 63.62% 63.62% 86.94% 63.58%

WRN-28-10 (DDPM) CIFAR-10 `2 ε = 128/255
78.13% 77.44% 77.44% 77.44% 90.24% 77.37%

WRN-70-16 (DDPM) 78.97% 78.39% 78.39% 78.39% 90.93% 78.31%

WRN-28-10 (DDPM) CIFAR-100 `∞ ε = 8/255
34.47% 30.81% 30.81% 30.81% 59.18% 31.23%

WRN-70-16 (DDPM) 36.27% 33.49% 33.49% 33.49% 60.46% 33.93%

Table 3: Clean (without adversarial attacks) accuracy and robust accuracy (against the different stages of
AUTOATTACK) on CIFAR-10 obtained by different models. Refer to https://github.com/fra31/auto-attack for more
details.

Loss landscapes. We analyze the adversarial loss landscapes of our best model trained on CIFAR-
10 against `∞ norm-bounded perturbations of size ε = 8/255 (a WRN-70-16). To generate a loss
landscape, we vary the network input along the linear space defined by the worse perturbation found
by PGD40 (u direction) and a random Rademacher direction (v direction). The u and v axes represent
the magnitude of the perturbation added in each of these directions respectively and the z axis is the
adversarial margin loss (Carlini & Wagner, 2017b): zy −maxi6=y zi (i.e., a misclassification occurs
when this value falls below zero). Fig. 4 shows the loss landscapes around the first 2 images of the
CIFAR-10 test set for the aforementioned model. Both landscapes are smooth and do not exhibit
patterns of gradient obfuscation. Overall, it is difficult to interpret these figures further, but they do
complement the numerical analyses done so far.
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Figure 4: Loss landscapes around the first two images from the CIFAR-10 test set for the WRN-70-16 networks
trained with DDPM samples. It is generated by varying the input to the model, starting from the original input
image toward either the worst attack found using PGD40 (u direction) or a random Rademacher direction (v
direction). The loss used for these plots is the margin loss zy −maxi6=y zi (i.e., a misclassification occurs when
this value falls below zero). The diamond-shape represents the projected `∞ ball of size ε = 8/255 around the
nominal image.

D DETAILS ON GENERATED DATA

Generative models. In this paper, we use three different and complementary generative models:
(i) BigGAN (Brock et al., 2018): one of the first large-scale application of GANs which produced
significant improvements in FID and IS on CIFAR-10 (as well as on IMAGENET); (ii) VDVAE Child
(2021): a hierarchical VAE which outperforms alternative VAE baselines; and (iii) DDPM Ho et al.
(2021): a diffusion probabilistic model based on Langevin dynamics that reaches state-of-the-art
FID on CIFAR-10. Except for BigGAN, we use the CIFAR-10 checkpoints that are available online.
For BigGAN, we train our own model and pick the model that achieves the best FID (the model
architecture and training schedule is the same as the one used by Brock et al., 2018). All models are
trained solely on the CIFAR-10 train set. As a baseline, we also fit a class-conditional multivariate
Gaussian, which reaches FID and IS metrics of 120.63 and 3.49, respectively. We also report that
BigGAN reaches an FID of 11.07 and IS of 9.71; VDVAE reaches an FID of 36.88 and IS of 6.03;
and DDPM reaches an FID of 3.28 and IS of 9.44.3,4

Datasets of generated samples. We sample from each generative model 5M images. Similarly
to Carmon et al. (2019), we score each image using a pretrained WRN-28-10. This WRN-28-10 is
trained non-robustly on the CIFAR-10 train set and achieves 95.68% accuracy.5,6 For each class, we
select the top-100K scoring images and build a dataset of 1M image-label pairs.7 This additional
generated data is used to train adversarially robust models by mixing for each minibatch a given
proportion of original and generated examples. Fig. 5 shows a random subset of this additional data
for each generative model. We also report the FID and IS metrics of the resulting sets in Table 1.
They differ from the metrics obtained by each generative model as we filter images to only pick the
highest scoring ones.

Diversity and complementarity. While the FID metric does capture how two distributions of
samples match, it does not necessarily provide enough information in itself to assess the overlap
between the distribution of generated samples and the train or test distributions (this is especially
true for samples obtained through common data augmentations). As such, we also decide to compute
the proportion of nearest neighbors in perceptual space. Given equal Inception metrics, a better

3For CIFAR-100, we trained our own DDPM which achieves an FID of 5.58 and IS of 10.82.
4For SVHN, we trained our own DDPM which achieves an FID of 4.89 and IS of 3.06.
5For CIFAR-100, the same model achieves 79.98% accuracy.
6For SVHN, the same model achieves 96.54% accuracy.
7All generated datasets are available online at https://github.com/deepmind/deepmind-research/tree/master/

adversarial robustness/iclrw2021doing.
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generative model would produce samples that are equally likely to be close to training, testing or
generated images.

We now describe how we compute Table 1 which reports the nearest-neighbors statistics for the
different augmentation methods. First, we sample 10K images from the train set of CIFAR-10
(uniformly across classes) and take the full test set of CIFAR-10. We then pass these 20K images
through the pretrained VGG network which measures a Perceptual Image Patch Similarity, also known
as LPIPS (Zhang et al., 2018b). We use the resulting concatenated activations and compute their
top-100 PCA components, as this allows us to compare samples in a much lower dimensional space
(i.e., 100 instead of 124,928). Finally, for each augmentation method (heuristics- or data-driven), we
sample 10K images and pass them through the pipeline composed of the LPIPS VGG network and
the PCA projection computed on the original data. For each sample, we find its closest neighbor in
the PCA-reduced feature space and measure whether this nearest-neighbor belongs to the original
dataset (train or test) or to the generated set (self) of 10K images.

(a) Conditional Gaussian (b) VDVAE

(c) BigGAN (d) DDPM

Figure 5: CIFAR-10 samples generated by different approaches and used as additional data to train adversarially
robust models. Each row correspond to a different class in the following order: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck. Each image is assigned a pseudo-label using a standard classifier trained on
the CIFAR-10 train set.
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Figure 6: Robust test accuracy (against AA+MT)
when training a WRN-28-10 against `∞ norm-bounded
perturbations of size ε = 8/255 on CIFAR-100 when
using additional data produced by a DDPM. We com-
pare how the ratio between original images and gener-
ated images in the training minibatches affects the test
robust performance (0 means generated samples only,
while 1 means original CIFAR-100 train set only).
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Figure 7: Robust test accuracy (against AA+MT)
when training a WRN-28-10 against `∞ norm-bounded
perturbations of size ε = 8/255 on SVHN when using
additional data produced by a DDPM. We compare
how the ratio between original images and generated
images in the training minibatches affects the test ro-
bust performance (0 means generated samples only,
while 1 means original SVHN train set only).

E ADDITIONAL RESULTS

CIFAR-100. For completeness, we also report the effect of mixing different proportions of gener-
ated and original samples in Fig. 6 against `∞ norm-bounded perturbations of size ε = 8/255 using
a WRN-28-10 on CIFAR-100. Similarly to Fig. 3, we observe that additional samples generated by
DDPM are useful to improve robustness, with an absolute improvement of +2.48% in robust accuracy.

SVHN. We report the effect of mixing different proportions of generated and original samples in
Fig. 6 against `∞ norm-bounded perturbations of size ε = 8/255 using a WRN-28-10 on SVHN.
Similarly to Fig. 3 and Fig. 6, we observe that additional samples generated by DDPM are useful to
improve robustness, with an absolute improvement of +4.07% in robust accuracy.

F ROBUSTBENCH

For reference, at the time of writing, the top-5 RobustBench (https://robustbench.github.io/; Croce et al.,
2020) leaderboard entries without and with additional data are listed in Table 4.

AUTHOR MODEL CLEAN ROBUST

WITHOUT EXTERNAL DATA

Gowal et al. (2020) WRN-70-16 85.29% 57.14%
Gowal et al. (2020) WRN-34-20 85.64% 56.82%
Wu et al. (2020) WRN-34-10 85.36% 56.17%
Pang et al. (2020a) WRN-34-20 86.43% 54.39%
Pang et al. (2020b) WRN-34-20 85.14% 53.74%

WITH EXTERNAL DATA

Gowal et al. (2020) WRN-70-16 91.10% 65.87%
Gowal et al. (2020) WRN-34-20 89.48% 62.76%
Wu et al. (2021) WRN-34-15 87.67% 60.65%
Wu et al. (2020) WRN-28-10 88.25% 60.04%
Carmon et al. (2019) WRN-28-10 89.69% 59.53%

Table 4: State of RobustBench leaderboard at the time of writing. We report the clean (without adversarial
attacks) accuracy and robust accuracy on CIFAR-10 against `∞ norm-bounded perturbations of size ε = 8/255.

13

https://robustbench.github.io/


Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

G RANDOMNESS IS ENOUGH

In this section, we provide three sufficient conditions that explain why generated data helps improve
robustness: (i) the pre-trained, non-robust classifier used for pseudo-labeling (see App. D) must
be accurate enough, (ii) the likelihood of sampling examples that are adversarial to this non-robust
classifier must be low, and (iii) it is possible to sample real images with enough frequency.

G.1 SETUP

Given access to a pre-trained non-robust classifier fNR : Xall 7→ Y and an unconditional generative
model approximating the true data distribution p? by a distribution p̂ over Xall, we would like to train
a robust classifier fθR parametrized by θ.

The set of inputs Xall = {0, 1/255, . . . , 1}n is the set of all images (discretized and scaled between 0
and 1) with dimensionality n.8 The set of labels Y ∈ 2Z is a set of integers, each of which represents
a given class (e.g., dog as opposed to cat). There exists an image manifold X ⊆ Xall that contains all
real images (i.e., images for which we want to enforce robustness). The distribution of real images
is denoted p? with Px∼p?(x) > 0 if x ∈ X and Px∼p?(x) = 0 otherwise. We further assume that
each image x ∈ X can be assigned one and only one label y = f?(x) where f? : X 7→ Y is a
perfect classifier (only valid for real images). Given a perturbation ball S(x)9, we restrict labels such
that there exists no real image within the perturbation ball of another that has a different label; i.e.,
∀x′ ∈ S(x) ∩ X we have f?(x) = f?(x′) for all x ∈ X .

Overall, we would like find optimal parameters θ? for fθ
?

R that minimize the adversarial risk,

θ? = argmin
θ

Ex∼p?
[

max
x′∈S(x)

1fθ
R (x′)6=f?(x)

]
(1)

without enumerating all real images or the ideal classifier. As such, we settle for the following
sub-optimal parameters

θ̂? = argmin
θ

Ex∼p̂
[

max
x′∈S(x)

1fθ
R (x′)6=fNR(x)

]
. (2)

Relationship to our method. The above setting corresponds to the one studied in the main
manuscript where a generative model is trained on a limited number of samples from the true
data distribution Dtrain = {xi ∼ p?}Ni=1. During training, we mix real and generated samples and
solve the following problem:

argminθ α · Ex∈D
[
maxx′∈S(x) lce

(
fθR (x

′), f?(x)
)]

+ (1− α) · Ex∼p̂′
[
maxx′∈S(x) lce

(
fθR (x

′), f ′NR(x)
)]
. (3)

where α is the ratio of original-to-generated samples (see Sec. 2), f ′NR is the underlying pre-trained
classifier (used for generated samples only), p̂′ is the generative model distribution (which excludes
samples from the train set, e.g. DDPM) and where the 0-1 loss is replaced with the cross-entropy loss
lce. Ignoring the change of loss, Eq. 3 can be formulated exactly as Eq. 2 by having

fNR(x) =

{
f?(x) if x ∈ D
f ′NR(x) otherwise

(4)

and by sampling a datapoint x from the distribution of our generative model as

x = 1r≤αx
′ + 1r>αx

′′ with r ∼ U[0,1],x′ ∼ UD and x′′ ∼ p̂′ (5)

where UA corresponds to the uniform distribution over set A.

G.2 SUFFICIENT CONDITIONS

In order to obtain sub-optimal parameters θ̂? that approach the performance of the optimal parameters
θ?, the following conditions are sufficient (in the limit of infinite capacity and compute).10 These
provide a deeper understanding of our method.

8Discretizing the image space is not necessary, but makes the mathematical notations simpler.
9E.g., S(x) = {x′ : ‖x− x′‖∞ ≤ ε}

10Understanding to which extent violations of these conditions affect robustness remains part of future work.
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Condition 1 (accurate classifier). The pre-trained non-robust classifier fNR must be accurate.
When p? = p̂, Eq. 2 can be made identical to Eq. 1 by setting fNR(x) = f?(x) for all x ∈ X . For all
practical settings, we posit that “good”, sub-optimal parameters θ̂? can be obtained even when the
non-robust classifier fNR is not perfect. However, it must achieve sufficient accuracy. On CIFAR-10,
typical classifiers that are solely trained on images from the train set can reach high accuracy. In our
work, we use a pseudo-labeling classifier that achieves 95.68% on the CIFAR-10 test set.

Condition 2 (unlikely attacks). The probability of sampling a point x ∼ p̂ outside the image
manifold such that it is adversarial to fNR is low:

Px∼p̂ (∃x′ ∈ X with fNR(x) 6= fNR(x
′) and x ∈ S(x′)) < δ, δ ≥ 0. (6)

To understand why this condition is needed, it is worth considering the optimal non-robust classifier
fNR(x) = f?(x) for all x ∈ X . When p? 6= p̂, it becomes possible to sample points outside the
manifold of real images and for which no correct labels exist. Fortunately, in the limit of infinite
capacity, these points can only influence the accuracy of the final robust classifier on real images if
they are within an adversarial ball S(x) for a real image x. In practical settings, it is well documented
that random sampling (e.g., using uniform or Gaussian sampling) is unlikely to produce images that
are adversarial. Hence, we posit than, unless the generative model represented by p̂ is trained to
produce adversarial images, this condition is met.

Condition 3 (sufficient coverage). There must a non-zero probability of sampling any point on
the image manifold:

Px∼p̂(x) > 0, ∀x ∈ X . (7)
In other words, the generative model should output a diverse set of samples and some of these samples
should look like real images. Note that it remains possible to obtain a “good”, sub-optimal robust
classifier when this condition does not hold. However, its accuracy will rapidly decrease as coverage
drops. Hence, it is important to avoid using generative models that collapsed to a few modes and
exhibit low diversity.

G.3 DISCUSSION

This last condition explains why samples generated by a simple class-conditional Gaussian-fit can be
used to improve robustness. Indeed, these conditions imply that it is not necessary to have access
to either the true data distribution or a perfect generative model when given enough compute and
capacity. However, it is also worth understanding what happens when capacity or compute is limited.
In this case, it is critical that the optimization focuses on real images and that the distribution p̂ be as
close as possible to the true distribution p?. In practice, this translates to the fact that better generative
models (such as DDPM) can be used to achieve better robustness.
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