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Abstract

We closely investigate the relationship between a neural network’s raw confidence and
accuracy out-of-domain, asking if confidence can provide any insight into out-of-domain
detection. We find that with few exceptions, modern neural networks are indeed less
confident on out-of-domain predictions; they appear to have some inherent knowledge of
what they do not know. This relationship does not appear to be consistent or guaranteed,
however, and likely cannot be used as more than a rough heuristic for out-of-domain
detection.

1 Introduction

In practical machine learning applications where reliability and model interpretability are important
(i.e., healthcare, autonomous driving, security), developers need to understand the performance and
correctness characteristics of their trained models (Guo et al., 2017). Recent work has focused
on understanding the calibration of neural networks, drawing a relationship between confidence
and accuracy for a given trained model. However, many modern neural network architectures
have achieved excellent classification accuracies at the expense of poorly-calibrated probability
distributions, leading to wildly overconfident predictions (Guo et al., 2017; Ovadia et al., 2019).

Completely out-of-domain data, which can arise in real-world scenarios due to sensor failures,
adversarial attacks, or changing real-world conditions (Kumar et al., 2020; Vergara et al., 2012;
Bobu et al., 2018; Farshchian et al., 2018), further reinforces the need for well-calibrated models.
Ideally, models should detect these situations and adjust their predictions and confidence levels
accordingly. In this work we explore the behavior of raw confidence under domain shift. We find
that confidence usually decreases out-of-domain, though this relationship is neither consistent nor
guaranteed. Our work suggests that raw confidence can serve as a helpful, albeit imperfect, heuristic
for out-of-domain detection.

2 Related Works

Calibration captures the relationship between a model’s confidence and its accuracy. In the case of
perfect calibration for a k-class classification problem,

%( 9 |X) = (f( 5 (X)) 9 (1)

where X is an input tensor, f is the softmax function, 9 is an integer-valued label, and 5 (X) ∈ R: is
the model’s pre-softmax output (class logits).

Much of the prior literature connecting calibration with raw (i.e., with no training-time augmenta-
tion or regularization) confidence and accuracy has focused on temperature scaling, a simple and
effective way to improve calibration for neural models without affecting accuracy (Guo et al., 2017).
Temperature scaling introduces a single scalar parameter g. Using the same notation as before, the
final prediction vector y is given by

y = f

(
5 (X)
g

)
(2)

Typically, g > 1, meaning that temperature scaling simply increases entropy across all predictions.

The high-confidence regions of a model can extend well outside the training distribution, as shown
by the existence of out-of-distribution data points that fool models into very high confidence values
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(Geng et al., 2018; Nguyen et al., 2014; Goodfellow et al., 2014). Unsurprisingly, temperature
scaling fails to generalize well out-of-domain (Ovadia et al., 2019; Desai & Durrett, 2020).

3 Out-of-Domain Confidence

3.1 Discussion

At a fundamental level, temperature scaling works in-domain because models – even when they
are overconfident in all cases – are less confident on low-accuracy data points. Given the opaque,
uninterpretable nature of modern neural networks, the fact that this pattern holds across a diverse
set of models and datasets is surprising and entirely non-trivial (Guo et al., 2017). We ask if,
taking a longer-term view of confidence (i.e., a trailing average), this same trend generally extends
out-of-domain.1

Temperature scaling’s poor generalizability to new domains (Ovadia et al., 2019) implies that the
drop in accuracy out-of-domain is not accompanied by a correspondingly large drop in confidence.
This, however, begs the question of whether there is any accompanying drop in confidence. To the
best of our knowledge, this question is currently unanswered. Just as a consistently overconfident
model is likely to have lower confidence for low-accuracy predictions, a model with poor OOD
calibration could still have lower average confidence out-of-domain, providing clues toward out-
of-domain detection. Moreover, if this relationship is consistent across different out-of-domain
sets, temperature scaling on the macro-level trends in confidence could provide a simple, on-the-fly
solution to miscalibration under various types of domain shift.

3.2 Methods

To explore the viability of such a solution, we will compare performance in-domain and out-of-
domain for several models across both textual and visual datasets, considering density distributions
and trailing-average plots of confidence and accuracy. Wewill also takemeasurements over perturbed
versions of the original data, allowing us to observe confidence and accuracy degradation over a
smooth gradient and providing direct comparisons to the true OOD set.

The perturbed data will consist of several copies of the evaluation set stacked together with varying
levels of perturbations, spanning a gradient from the original dataset to pure noise. In the text domain,
noise will be simulated by replacing a word with another word from the dictionary at random. For
images, we will employ perturbations both with Gaussian noise and with convergence to a fixed
constant pixel value.2

More details on the experimental setup are available in Appendix A.

4 Results

We summarize our results here, but complete charts of all experiments are included in Appendix B.

4.1 Text Models

4.1.1 LSTM on Newsgroups-20

We trained a single-layer BiLSTM (Hochreiter & Schmidhuber, 1997) model via distillation (Tang
et al., 2019) with RoBERTA (Liu et al., 2019) on the even genres of the Newsgroups20 dataset

1We focus on the general case instead of specially-crafted adversarial examples. Given the existence of
in-domain, adversarial points (Stutz et al., 2018), this issue is not unique to out-of-domain data; temperature
scaling can serve as an effective light-weight strategy in many use cases despite its vulnerability to adversarial
attack.

2Recent works (Stutz et al., 2018; Kong et al., 2020) have shownmore targeted methods of creating perturbed
data outside the original manifold. However, the gradual accuracy decay in our experiments suggests that our
coarser approach is effective as well. Moreover, our strategy results in a gradual descent off the manifold, rather
than the immediate drop-off obtained by travelling even a small distance along an adversarial direction (Gilmer
et al., 2018).

2



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Conf.
Accuracy

Real Noise
ID 0.948 0.755 0.765

OOD 0.868 0.168 0.410

Table 1: LSTM on NG-20

Conf.
Accuracy

Real Noise
ID 0.884 0.781 0.760

OOD 0.792 0.509 0.520

Table 2: LSTM on SNLI

Conf.
Accuracy

Real Noise
ID 0.962 0.896 0.902

OOD 0.873 0.074 0.585

Table 3: BERT on NG-20

The first row of the table shows confidence and accuracy on the in-domain set and the unperturbed
portion of the noise set. The second row compares accuracies on the true OOD set and the perturbed
at the same confidence level.

(Lang, 1995), using the odd genres as the OOD set. Even and odd pairs were collapsed onto the
same label, so that the ID and OOD sets had the same sets of labels. (For example, the predicted
label 0 corresponded to Newsgroups genres 0 and 1; this made it possible for the model to "predict"
the OOD set accurately.)

The ID and OOD confidences were clearly distinct, and confidence and accuracy both decayed slowly
with noise on the perturbed set. However, the relationship between accuracy and confidence here
was not consistent; for the same drop in confidence, the true out-of-domain set had a much larger
drop in accuracy than the perturbed set (Fig. 1) (Table 1).

4.1.2 LSTM on SNLI

We trained the same distilled BiLSTMmodel on SNLI (Bowman et al., 2015), usingMNLI (Williams
et al., 2017) as the out-of-domain set. (Note that MNLI, while distinct from and more difficult than
the model’s training domain, is still a related dataset and is not completely OOD data.)

Once more, out-of-domain confidence was markedly lower than in-domain, the ID and OOD sets
had distinct confidence distributions, and confidence declined with noise. The accuracy drop-offs
for the noise and the actual OOD set were well-aligned in this case, but confidence leveled off in the
noise plot well before accuracy (Fig. 2) (Table 2).

4.1.3 BERT on Newsgroups-20

We fine-tuned a BERT (Devlin et al., 2018) model for classification on the Newsgroups20 dataset,
with the same label coalescence as before.

Despite the change in model, there was again a clear but inconsistent relationship between confidence
and accuracy (Fig. 3) (Table 3).

4.2 Image Models

4.2.1 ResNet-18 on CIFAR-10

We trained a ResNet18 (He et al., 2015) model on CIFAR-10 (Krizhevsky, 2012) with SVHN (Netzer
et al., 2011) as the OOD set.

The relationship was identifiable but inconsistent, as accuracy leveled off before confidence in the
noise chart, and the drop in confidence on the OOD set lead to a larger drop of accuracy than the same
confidence drop over noise. Interestingly, confidence ticked upward as we converged to a constant
value (Fig. 4) (Table 4).
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Conf.
Accuracy

Real Noise Const.
ID 0.959 0.850 0.860 0.839
OOD 0.863 0.113 0.247 0.474

Table 4: ResNet-18 on CIFAR-10

Conf.
Accuracy

Real Noise Const.
ID 0.982 0.948 0.945 0.947
OOD 0.845 0.128 0.106 0.516

Table 5: DLA on CIFAR-10

4.2.2 DLA on CIFAR-10

We trained a Deep Layer Aggregation (Yu et al., 2017) on CIFAR-10 and again used SVHN as the
OOD set.

The results continued the general trend of declining confidence corresponding to declining accuracy
in both the noise samples and the true OOD data. Yet the noise plot and the constant value plots
both featured upticks; two data regions with the same average confidence correspond to dramatically
different accuracies. Importantly, accuracy degradation was not consistent here either (Fig. 5) (Table
5).

4.2.3 ResNet-18 on MNIST

We trained a ResNet18 (He et al., 2015) model on MNIST (Lecun et al., 1998), using SVHN (Netzer
et al., 2011) (out-of-domain, but related), and Fashion MNIST (Xiao et al., 2017) (completely out-
of-domain) as our OOD sets. As in the coalesced Newsgroups case, these datasets all shared the
same labels.

The results for this setup were perhaps the most interesting of all our experiments. There was
a noticeable difference between the out-of-domain and in-domain confidences; this is visible in
both the density plot and the direct comparison. However, there was no difference in accuracy or
confidence between the SVHN set (out-of-domain, but related; like MNIST, the dataset consists of
digits) and Fashion MNIST (totally out-of-domain). In both cases, our predictions fared no better
than random guesses.

Even more surprising was the trend in both noise charts: This model approached 100% confidence
on both random noise and constant values. (We tried a range of values and saw the same result on
all of them; this is not the result of a particularly hostile value.) Although the connected between
confidence and accuracy discussed thus far may seem obvious, this anomalous result proves that
it is not a foregone conclusion. Even in general use cases, a model’s confidence can provide zero
indication that it is out-of-domain (Fig. 6).3

5 Conclusions

Consistently, across a wide range of examples, we observe that there is a marked difference in confi-
dence in-domain versus out-of-domain. However, this pattern is not guaranteed and is inconsistent
across different OOD datasets. Our anomalous results with ResNet on the digit datasets seem partic-
ularly relevant to sensitive applications, as they suggest even general use cases – not just handcrafted
adversarial examples – can expose the poor confidence alignment of neural networks.

It seems very unlikely that patterns in confidence could be used as part of a post-training scheme
to tune temperature and recalibrate a model out-of-domain. Nonetheless, our results demonstrate
that long-term confidence trends may serve as a useful, if highly imperfect, heuristic for out-of-
domain detection. Future works may seek to investigate models’ prediction zones and explain why
certain OOD samples trigger high confidence values. This, in turn, might lead to more effective
inference-time heuristics for OOD detection.

3No table is included for this experiment because the average confidence on the synthetic set never reached
the level seen on the OOD data.
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A Experimental Setup

We plotted three measurements for each model.

• A simple density plot to compare the distributions of confidence in-domain and out-of-
domain. All confidences (ID and OOD) were temperature-scaled with g = 2.5 to enhance
visibility.

• The trailing average (100) of confidence and accuracy over runs of in-domain and out-
of-domain data. Our harness alternated between the in-domain and out-of-domain sets at
random, using runs of length 500-1000 for each. The domain switches were not explicitly
labeled but are visibly obvious in all of the plots.

• The trailing average (1000) of confidence and accuracy over introduced noise. (This serves
as a gradual, controlled OOD set for the models, with which the actual OOD performance
can be compared.) For these charts, 40-80 copies of the in-domain test set were stacked next
to one another with increasing levels of noise; the first copy was the unaltered evaluation
set, while the last copy was pure noise. For text models, noise was incorporated by
swapping each word to a random word from the model’s vocabulary with probability ?,
which increased in linear increments from 0 to 1. For image models, two separate forms of
noise were plotted. In the first, zero-meaned Gaussian noise was introduced with linearly
increasing variance. The image was then re-normalized to its original mean and variance
to remove any distortions resulting from changed pixel magnitudes. For the second, each
pixel G in the image was changed to (1 − U)G + U2, where 2 is a constant value close to the
mean of the image. The parameter U was linearly increased from 0 to 1.

For the direct comparisons in the tables, we computed average confidence and average accuracy
on the true in-domain and out-of-domain sets and then picked regions from the synthetic data
corresponding to the same confidence levels. This allowed us to compare the accuracy-confidence
relationship across two different OOD sets for the same model.
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Figure 1: LSTM on Newsgroups-20
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Figure 2: LSTM on SNLI
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Figure 3: BERT on Newsgroups-20
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Figure 4: ResNet-18 on CIFAR-10
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Figure 5: DLA on CIFAR-10
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Figure 6: ResNet-18 on MNIST
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