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ABSTRACT

Adversarial training is one of the most effective defenses against adversarial at-
tacks. Previous works suggest that overfitting is a dominant phenomenon in adver-
sarial training leading to a large generalization gap between test and train accuracy
in neural networks. In this work, we show that the observed generalization gap is
closely related to the choice of the activation function. In particular, we show that
using activation functions with low (exact or approximate) curvature values has a
regularization effect that significantly reduces both the standard and robust gen-
eralization gaps in adversarial training. We observe this effect for both differen-
tiable/smooth activations such as Swish as well as non-differentiable/non-smooth
activations such as LeakyReLU. In the latter case, the “approximate” curvature
of the activation is low. Finally, we show that for activation functions with low
curvature, the double descent phenomenon for adversarially trained models does
not occur.

1 INTRODUCTION

Deep Neural Networks can be readily fooled by adversarial examples, which are computed by
adding small perturbations to clean inputs (Szegedy et al., 2014). Adversarial attacks have been
well studied in the machine learning community in recent years (Carlini & Wagner, 2017; Madry
et al., 2018; Goodfellow et al., 2015). There have been several empirical and certified defenses pro-
posed against adversarial attacks (Papernot et al., 2016; Song et al., 2018; Singla & Feizi, 2020).
We focus on adversarial training (Madry et al., 2018), one of the most effective empirical defenses
proposed in the literature. It has been shown that networks produced through vanilla adversarial
training do not robustly generalize well (Schmidt et al., 2018; Rice et al., 2020; Farnia et al., 2018)
and the gap between robust train and test accuracy i.e. the robust generalization gap can be far
greater than the generalization gap that occurs during standard empirical risk minimization. Rice
et al. (2020) showed that while traditional overfitting approaches such as l1, l2 regularization can
reduce the robust generalization gap, no approach works better than simple early stopping.

The key observation of our work is that for smooth activation functions, the maximum of the second
derivative or the maximum curvature has a significant impact on generalization. Specifically by us-
ing activations with low curvature, both the robust and standard generalization gap can be reduced,
whereas with high curvature the gap increases. We also show similar observations for non-smooth
activations, with low “approximate” curvature. Our results therefore show that the robust overfitting
phenomenon can be mitigated with a properly chosen activation function without the need for early
stopping (Rice et al., 2020). Lastly, we study the phenomenon of double descent for adversarially
trained models (Nakkiran et al., 2019). In this phenomenon, when increasing model size, test ac-
curacy first increases and then starts decreasing. However, upon reaching a critical point in model
size known as the interpolation threshold, the test accuracy again starts increasing as model size
increases. We show that double descent curves reported by Rice et al. (2020) for robust overfitting
using ReLU do not hold for activation functions with low curvature such as Swish.
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Decreasing Curvature

Figure 1: Learning curves for adversarially trained Resnet-18 models. ReLU activation is non-
smooth and included as a baseline, all the other activations are ordered by decreasing curvature from
left to right.

2 IMPACT OF ACTIVATION CURVATURE ON ADVERSARIAL TRAINING

In this section we consider the effects of the curvature of smooth activation functions on standard
and robust generalization gaps. We consider the smooth activation functions shown in Figure 2a. We
define curvature as the maximum of the second derivative i.e maxx f

′′(x), and rank the activations
by their curvature i.e LiSHT > GeLU > Mish > Swish. More details regarding the activations
are provided in Appendix B. We also conduct experiments for non-smooth ReLU activation as a
baseline.

2.1 SMOOTH ACTIVATION FUNCTIONS AND GENERALIZATION GAP

We show our results on the CIFAR-10 dataset (Krizhevsky et al.) with Resnet-18 (He et al., 2015)
architecture for an l∞ threat model with ε = 8/255. We also systematically evaluate this for another
family of activation functions with different curvatures in Appendix C.2. More experimental details
are discussed in C.1.

In Figure 1 we show the learning curves for different activations, and reproduce the robust overfit-
ting phenomenon for all activations (Rice et al., 2020). The robust training loss keeps decreasing,
however robust test loss rises shortly after the first learning rate drop. For standard training and stan-
dard test loss however, both keep decreasing throughout training. This phenomenon shows the best
performance for robust test accuracy is not achieved by training till convergence, unlike standard
training. The best standard accuracy however, is still reached by training till convergence. In con-
trast to Xie et al. (2020) we also show that, LiSHT a smooth activation function performs worse than
ReLU and shows a larger robust generalization gap. We also note that for activations that display
a large robust generalization gap, the standard generalization gap is also higher. Finally, the curva-
ture of activation function has a direct impact on both the robust and standard generalization gaps,
as shown in the learning curves. Activations with high curvature such as LiSHT and GeLU have
large generalization gap and activations with low curvature such as Mish and Swish have smaller
generalization gap.

In Table 1 we show the robust and standard accuracies for the models. To show the gap due to robust
overfitting, we also show the best robust accuracy using early stopping with validation set in the
”Best Val” column. We also report the corresponding standard accuracy for the best robust accu-
racy checkpoint (not the best standard accuracy checkpoint). The robust generalization gap falls
from 44.83% to 6.93% and standard generalization gap falls from 17.37 to 5.24%. This indicates
the large impact of activation curvature on adversarial training. The decrease in robust performance
caused by longer training (i.e best vs final checkpoint performance) also decreases for activations
with smaller curvature. For example, the overfitting gap falls from 3.09% for LiSHT to 0.61% for
Swish. Standard accuracy however, either remains the same or improves by training longer (com-
pared to the best checkpoint).

2.2 ANALYZING THE INFLUENCE OF ACTIVATIONS ON ROBUSTNESS

In this section, we analyze the relationship between curvature of the activation function and adver-
sarial robustness. We consider a simple two-layer neural network performing binary classification,
represented as f(x) = wT2 σ(w1x) where σ(·) is a twice differentiable activation function and σ′′(·)
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Robust Accuracy Standard Accuracy
Activation Final Train Final Test Best Val Diff. Final Train Final Test Best Val Diff.

LiSHT 92.27 47.44 50.53 44.83 99.90 82.53 82.44 17.37
ReLU. 82.46 49.77 51.61 32.69 98.9 83.73 81.62 15.17
GeLU 65.45 49.63 50.40 15.82 92.41 82.81 79.25 09.60
Mish 57.00 49.38 49.87 07.62 86.48 80.05 79.96 06.43
Swish 56.15 49.22 49.83 06.93 85.79 80.55 80.57 05.24

Table 1: Results for different activations on CIFAR-10 with ResNet-18. We use the best checkpoint
based on best robust accuracy on the validation set shown in “Best Val” column. The generalization
gap, i.e diff. between final train and test accuracy is shown in “Diff.” column. Generalization gap
for both standard and robust accuracy decreases for activations with decreasing curvature.

denotes its second derivative. Assume the final layer of the network outputs a single logit on which
the sigmoid function is applied, given as p(x) = σ(f(x)). Assuming a sample is classified into class
1 if p(x) < 0.5, then a sample x is classified into class 1 iff f(x) < 0 and class 0 otherwise. We
assume that the neural network can be locally well approximated using the second order Taylor ex-
pansion. Let x belong to class 1, then for x+δ to be classified as class 0, the minimal l2 perturbation
that fools the classifier can be written as:

δ∗ = arg min
δ
‖δ‖ s.t. f(x) +∇xf(x)T δ +

1

2
δT∇2

xf(x)δ ≥ 0

It can be shown under these assumptions the magnitude of δ∗ can be upper and lower bounded with
respect to input curvature. We use the following lemma from Moosavi-Dezfooli et al. (2018) -

Lemma 1. Let x be such that c = −f(x) ≥ 0, and let g = ∇xf(x). Let ν = λmax

(
∇2
xf(x)

)
≥ 0,

denote the largest eigenvalue u be the eigenvector corresponding to ν. Then,

‖g‖
ν

(√
1 +

2νc

‖g‖2
− 1

)
≤ ‖δ∗‖ ≤ ‖g

Tu‖
ν

(√
1 +

2νc

(gTu)2
− 1

)
(1)

The lemma shows that upper and lower bounds on the magnitude of δ∗ increase, as v decreases, as
shown in Moosavi-Dezfooli et al. (2018). An increase in ‖δ∗‖ therefore increases the minimum l2
ball required to find an adversarial example for input x, leading to increased robustness. Therefore,
a low maximum eigenvalue of the input Hessian leads to higher adversarial robustness assuming all
other factors are kept constant.

We now show the relation between activation functions and input curvature. For the considered two
layer neural network, the Hessian with respect to the input x is given as:

∇2
xf(x) = wT1 diag

(
σ′′(w1x)� w2

)
w1 (2)

where � denotes the Hadamard product between two vectors. Equation 2 shows that the Hessian of
the input directly depends on σ′′(.), which suggests that an increase in the curvature of the activa-
tion function leads to an increase in the norm of the input Hessian. We observe this for adversarially
trained Resnet-18 models in Fig. 2b; maximum eigenvalue is larger for activation with large cur-
vature. Although we assume our activation to be smooth, we expect similar results for non-smooth
activations. This result combined with our previous observation therefore suggests high activation
curvature indeed leads to lower robustness.
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k Robust Accuracy Standard Accuracy
Train Test Diff. Train Test Diff.

0.5 52.7 49.0 3.7 82.9 79.5 3.4
0.3 63.0 50.1 12.9 92.0 83.5 8.4
0.2 69.6 49.6 19.9 95.3 84.2 11.1
0 82.4 49.7 32.6 98.9 83.7 15.1

-0.2 85.8 48.8 37.0 99.4 83.0 16.4

Table 2: Results for LeakyReLU activation func-
tion. Standard and robust generalization gap in-
creases with increasing k.
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Figure 3: Generalization curves showing the
double descent phenomenon occurs for ReLU
but not Swish activation.

2.3 DOES SMOOTHNESS MATTER?

Xie et al. (2020) posit that smooth activations improve gradients achieving superior performance.
In contrast, we show that the relation of the generalization gap to activations can be observed for
non-smooth activations as well. We use the non-smooth LeakyReLU activation function defined as
follows:

LeakyReLU(k, x) =

{
x if x ≥ 0

kx if x < 0

where k is a hyper-parameter that can be tuned. For non-smooth LeakyReLU, we use the difference
of slopes, i.e ‖1− k‖ as the “approximate” curvature of the function. Hence, for k ≤ 1 the approx-
imate curvature decreases with increasing value of k. See Figure 4b in Appendix for visualization
of LeakyReLU. We observe behavior similar to smooth activations for LeakyReLU as shown in Ta-
ble 2. For k = 0.5, the approximate curvature is low, and both robust and standard generalization
gap, 3.74 and 3.43 respectively is much smaller than k = −0.2, for which robust and standard
generalization gap are 37.07 and 16.46. We therefore hypothesize for non-smooth activations, the
“approximate” curvature of the activation function has impact on the generalization gap.

3 DOUBLE DESCENT CURVES

Generalization in deep learning typically has shown improved performance for increased model
complexity beyond data interpolation point, known as double descent phenomenon (Belkin et al.,
2019). Although model size and training time can both be viewed as increasing model complexity,
double descent is observed with increasing model size, and training longer causes overfitting. They
therefore posit that training longer and increasing architecture size have separate effects on robust
generalization.

In Figure 3, we show the results for ReLU and the Swish1 activation function using Wide Resnet-28
with different width factors. While the double descent phenomenon is observed for ReLU activation,
robust test performance continues to decrease for the Swish activation function. We observe Swish
with width 4 is able to match performance of ReLU with width 15 when trained till convergence. The
results therefore suggest that activations with low curvature can act as a regularizer to mitigate the
double descent phenomenon. Also robust test error for width 15 is equivalent for ReLU and Swish,
suggesting that low curvature activations may not be useful for models with very large width.

4 CONCLUSION

In this work, we analyze the regularization effect of curvature of activation functions on adversarial
training and show this extends to non-smooth activations as well. Our experiments also show that
double descent, another phenomenon that has a significant impact on robust generalization can be
mitigated using activations with low curvature. Since robust overfitting is common in adversarial
training, the properties of activation functions that we bring to light in this work can be useful for
state of the art robust models.

1Experiments with other activations could not be conducted due to the expensive training of Wide Resnets,
so we use Swish activation function, because of its lowest curvature among all the activations considered.
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A RELATED WORKS

Goodfellow et al. (2015) provided one of the first approaches for adversarial training based on gen-
erating adversarial examples through the fast sign gradient method (FGSM). Building on this, a
stronger adversary known as basic iterative method Kurakin et al. (2017) was proposed in subse-
quent work, using multiple smaller steps for generating adversarial examples. Madry et al. (2018)
extended this adversary with multiple random restarts to train models on adversarial data, referred
to as projected gradient descent (PGD) adversarial training. Further works have focused on improv-
ing the performance of the adversarial training procedure with methods such as feature denoising
(Xie et al., 2019), hypersphere embedding (Pang et al., 2020b) and using friendly adversarial data
(Zhang et al., 2020). The TRADES objective (Zhang et al., 2019b) balances standard and robust
error achieving state of the art performance for adversarial training. However Rice et al. (2020)
showed that the performance of TRADES can be matched using simple early-stopping. Another
recent work challenges this study and shows that with modifications to the training framework such
as weight decay and batch-normalization (Pang et al., 2020a), TRADES again achieves state of art
performance. A separate line of works has focused on speeding up adversarial training due to its in-
creased time complexity, by reducing attack iterations and computational complexity for calculating
gradients (Zhang et al., 2019a; Shafahi et al., 2019; Wong et al., 2020).

Besides adversarial training, several other defenses have been proposed such as defensive distillation
(Papernot et al., 2016), preprocessing techniques (Guo et al., 2018; Song et al., 2018; Buckman
et al., 2018) and randomized transformations (Xie et al., 2018; Dhillon et al., 2018; Liu et al., 2018)
or detection of adversarial examples (Metzen et al., 2017; Feinman et al., 2017). However these
methods were later broken by stronger adversaries (Athalye et al., 2018; Tramer et al., 2020; Carlini
& Wagner, 2017). These defense methods were shown to rely on obfuscated gradients (gradient
masking), which provided a false sense of security. Due to the bitter history of gradient masking
as a defense, Xie et al. (2020) proposed use of smooth activations with a single step PGD attack
to improve adversarial robustness, reaching state of the art robust performance on ImageNet (Deng
et al., 2009). Xie et al. (2020) hypothesize that using smooth activations provides networks with
better gradient updates and allows adversaries to find harder examples.

Since many defenses proposed in the literature have been broken, another separate line of work
has focused on certified defenses, which can guarantee robustness against adversarial attacks for
different norms such as l2 or l∞. Some of these techniques however are not scalable to large neural
networks. The various different methods proposed in the literature use techniques such as mixed-
integer programming methods (Tjeng et al., 2019; Lomuscio & Maganti, 2017; Fischetti & Jo, 2017;
Bunel et al., 2018) and satisfiability modulo theories (Katz et al., 2017; Ehlers, 2017; Huang et al.,
2017). Some certification methods bound the global Lipschitz constant of the network. Such bounds
are usually loose for large neural networks with multiple layers (Anil et al., 2019; Gouk et al., 2020).
Another line of work has focused on providing loose certificates, which leverage techniques such
as randomized smoothing (Cohen et al., 2019; Lecuyer et al., 2019), abstract representations (Gehr
et al., 2018; Mirman et al., 2018; Singh et al., 2019), interval bound propagation (Gowal et al., 2019)
and duality and linear programs (Salman et al., 2020; Wong & Kolter, 2018; Wong et al., 2018).

Lack of overfitting in overparameterized deep learning models is an intriguing phenomenon for deep
learning (Zhang et al., 2017). These models can be trained to effectively zero training error, without
having impact on test time performance. Hence, it is now standard practice in deep learning to
train longer and use large overparameterized models, since test accuracy generally improves past an
interpolation point also known as double descent generalization (Belkin et al., 2019; Nakkiran et al.,
2019). Schmidt et al. (2018) however have shown that sample complexity required for adversarially
robust generalization is significantly higher than sample complexity for standard generalization. In a
recent work, Rice et al. (2020) have shown the overfitting phenomenon to be dominant in adversarial
training. In their work, they show after training for a certain period, the model starts to overfit and
robustness decreases on the test set, and even double descent generalization curves seemed to hold.
Rice et al. (2020) also tried various regularization techniques to prevent robust overfitting, among
which early-stopping was the most effective solution.
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β Robust Accuracy Standard Accuracy
Train Test Diff. Train Test Diff.

0.5 47.00 45.86 1.14 75.39 73.57 1.82
1 56.15 49.22 6.93 85.79 80.55 5.24
2 69.65 49.96 19.69 94.57 83.39 11.18
4 83 50.11 32.89 98.82 84.48 14.34

10 89.2 50.91 38.29 99.7 83.57 16.13

Table 3: Performance of PSwish with different β values, higher β value indicates higher curvature.
Results are shown for final checkpoint and show that for activations with high curvature, standard
and robust generalization gap increases.

B ACTIVATION FUNCTIONS

We use the activation functions defined below, ranked by their curvature:

1. Linearly Scaled Hyperbolic Tangent (LiSHT) (Roy et al., 2020): f(x) = x ∗ tanh(x), this
function has highest curvature among activations considered.

2. Gaussian Error Linear Unit (GeLU) (Hendrycks & Gimpel, 2020): f(x) = x ∗ Φ(x), where
Φ(x) is gaussian cummulative distribution function.

3. Mish (Misra, 2020): f(x) = x ∗ tanh(ln(1 + exp(x))) is a smooth continuous function similar
to Swish.

4. Swish (Ramachandran et al., 2017): f(x) = x∗sigmoid(x) is a smooth approximation to ReLU
with a non-monotonic “bump” for x < 0.

C MORE EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

Experimental Settings - For comparison with best early-stop checkpoint Rice et al. (2020), we
randomly split the original set into training and validation set with 90% and 10% images respectively.
We consider the l∞ threat model and use PGD-10 step attack with ε = 8/255 and α = 2/255 for
reporting the train and test accuracy. We use the ResNet-18 He et al. (2015) architecture for all
our experiments except for experiments with double descent curves where we use Wide ResNet-28
Zagoruyko & Komodakis (2017). We use the same training setup as Rice et al. (2020) throughout
the paper, an SGD optimizer with momentum of 0.9, weight decay 5 × 10−4 for 200 epochs with
batch size of 128.

C.2 ANALYZING CURVATURE EFFECTS WITH PARAMETERIC SWISH

To further understand the impact of activation curvature on standard and robust generalization gap,
we conduct analysis with Parameteric Swish (PSwish), defined as follows:

f(x) = x · sigmoid(βx)

9
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The Swish function defined previously is a special case of PSwish, when β = 1. PSwish transitions
from the identity function for β = 0, to ReLU for β →∞. The curvature of PSwish increases as β
increases. Figure 4a shows the PSwish activation function for different values of β.

We show the results with the CIFAR-10 dataset, for final checkpoints for training and testing set in
Table 3. Interestingly, we observe that both the standard and robust generalization gap are extremely
dependent on the choice of β. The robust generalization gap increases from 1.14 to 38.29 and the
standard generalization gap increases from 1.82 to 16.13 for β = 0.5 and β = 10 respectively. We
also observe that robust test accuracy for the final checkpoint increases from 45.86 to 50.91 for the
same β values. For larger values of β i.e β →∞, PSwish behaves like ReLU and standard and robust
final test accuracy start decreasing. The results are consistent with our previous experiments and
show that the standard and robust generalization gap increases for activations with high curvature.
Further using the early stopping checkpoint with the validation set, PSwish with β = 10 outperforms
ReLU baseline by 0.7% on robust accuracy and 1.24% on standard accuracy, highlighting that the
choice of activation function can improve standard and robust performance for adversarially trained
models.
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