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ABSTRACT
Fairness and robustness are two important concerns for federated learning systems.
In this work, we identify that robustness to data and model poisoning attacks and
fairness, measured as the uniformity of performance across devices, are competing
constraints in statistically heterogeneous networks. To address these constraints,
we propose employing a simple, general framework for personalized federated
learning, Ditto, and develop a scalable solver for it. Theoretically, we analyze
the ability of Ditto to achieve fairness and robustness simultaneously on a class
of linear problems. Empirically, across a suite of federated datasets, we show that
Ditto not only achieves competitive performance relative to recent personaliza-
tion methods, but also enables more accurate, robust, and fair models relative to
state-of-the-art fair or robust baselines.1

1 INTRODUCTION
Federated learning (FL) aims to collaboratively learn from data that has been generated by, and
resides on, a number of remote devices or servers (McMahan et al., 2017). FL stands to produce
highly accurate statistical models by aggregating knowledge from disparate data sources. However,
to deploy FL in practice, it is necessary for the resulting systems to be not only accurate, but to also
satisfy a number of pragmatic constraints regarding issues such as fairness, robustness, and privacy.
Simultaneously satisfying these constraints can be exceptionally difficult (Kairouz et al., 2019).

We focus in this work specifically on issues of accuracy, fairness (i.e., limiting performance disparities
across the network (Mohri et al., 2019)), and robustness (against training-time data and model
poisoning attacks). Many prior efforts have separately considered fairness or robustness in federated
learning. For instance, fairness strategies include using minimax optimization to focus on the worst-
performing devices (Mohri et al., 2019; Hu et al., 2020) or reweighting the devices to allow for a
flexible fairness/accuracy tradeoff (Li et al., 2020d; 2021). Robust methods commonly use techniques
such as gradient clipping (Sun et al., 2019) or robust aggregation (Blanchard et al., 2017).

While these approaches may be effective at either promoting fairness or defending against training-
time attacks in isolation, we show that the constraints of fairness and robustness can directly compete
with one another when training a single global model, and that simultaneously optimizing for accuracy,
fairness, and robustness requires careful consideration. For example, as we empirically demonstrate
(Section 4), current fairness approaches can render FL systems highly susceptible to training time
attacks from malicious devices. On the other hand, robust methods may filter out rare but informative
updates, causing unfairness (Wang et al., 2020).

In this work, we investigate a simple, scalable technique to simultaneously improve accuracy, fairness,
and robustness in federated learning. While addressing the competing constraints of FL may seem like
an insurmountable problem, we identify that statistical heterogeneity (i.e., non-identically distributed
data) is a root cause for tension between these constraints, and is key in paving a path forward. In
particular, we suggest that methods for personalized FL—which model and adapt to the heterogeneity
in federated settings by learning distinct models for each device—may provide inherent benefits in
terms of fairness and robustness.

To explore this idea, we propose Ditto, a scalable federated multi-task learning framework. Ditto
can be seen as a lightweight personalization add-on for standard global FL. It is applicable to both
convex and non-convex objectives, and inherits similar privacy, efficiency, and convergence properties
as traditional FL. We evaluate Ditto on a suite of federated benchmarks and show that, surprisingly,

1A full version of this paper is also available at https://arxiv.org/abs/2012.04221.
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this simple form of personalization can in fact deliver better accuracy, robustness, and fairness benefits
than state-of-the-art, problem-specific objectives that consider these constraints separately.

2 BACKGROUND & RELATED WORK

Robustness and fairness are two broad areas of research that extend well beyond the application of
federated learning. In this section we provide precise definitions of the notions of robustness/fairness
considered in this work. We give a complete overview of prior work in robustness, fairness, and
personalization in the context of federated learning in Appendix A.

Robustness in Federated Learning. Our work aims to investigate common attacks related to
Byzantine robustness (Lamport et al., 2019), as formally described below.

Definition 1 (Robustness). We are conceptually interested in Byzantine robustness (Lamport et al.,
2019), where the malicious devices can send arbitrary updates to the server to compromise training.
To measure robustness, we assess the mean test performance on benign devices; i.e., we consider
model w1 to be more robust than w2 to a specific attack if the mean test performance across the
benign devices is higher for model w1 than w2 after training with the attack.
We examine three widely-used attacks in our threat model: (A1) Label poisoning: Corrupted de-
vices do not have access to the training APIs and training samples are poisoned with flipped (if
binary) or uniformly random noisy labels (Bhagoji et al., 2019; Biggio et al., 2011). (A2) Random
updates: Malicious devices send random Gaussian parameters (Xu & Lyu, 2020). (A3) Model
replacement: Malicious devices scale their adversarial updates to make them dominate the aggregate
updates (Bagdasaryan et al., 2020).
In terms of defenses, in our experiments (Section 4), we compare Ditto with several strong defenses
(median, gradient clipping (Sun et al., 2019), Krum, Multi-Krum (Blanchard et al., 2017), gradient-
norm based anomaly detector (Bagdasaryan et al., 2020), and a new defense proposed herein) and
show that Ditto can improve both robustness and fairness compared with these methods.

Fairness in Federated Learning. Due to the heterogeneity of the data in federated networks, it is
possible that the performance of a model will vary significantly across the network. This concern,
also known as representation disparity (Hashimoto et al., 2018), is a major challenge in FL, as it can
potentially result in uneven outcomes for the devices. Following Li et al. (2020d), we provide a more
formal definition of this fairness in the context of FL below:
Definition 2 (Fairness). We say that a model w1 is more fair than w2 if the test performance
distribution of w1 across the network is more uniform than that of w2, i.e., std {Fk(w1)}k∈[K] <

std {Fk(w2)}k∈[K] where Fk(·) denotes the test loss on device k∈[K], and std{·} denotes the
standard deviation. In the presence of adversaries, we measure fairness only on benign devices.

Personalized Federated Learning. We defer the discussions on personalized FL to Appendix A.

3 DITTO : GLOBAL-REGULARIZED FEDERATED MULTI-TASK LEARNING

Traditionally, federated learning objectives consider fitting a single global model, w, across all local
data in the network. In particular, the aim is to solve:

min
w

G(F1(w), . . . FK(w)) , (Global Obj)

where Fk(w) is the local objective for device k, and G(·) is a function that aggregates the local
objectives {Fk(w)}k∈[K] from each device. For example, in FedAvg (McMahan et al., 2017), G(·) is
typically set to be a weighted average of local losses, i.e.,

∑K
k=1 pkFk(w), where pk is a pre-defined

non-negative weight such that
∑
k pk = 1.

However, in general, each device may generate data xk via a distinct distribution Dk, i.e., Fk(w) :=
Exk∼Dk

[fk(w;xk)]. To better account for this heterogeneity, it is common to consider techniques
that learn personalized, device-specific models, {vk}k∈[K] across the network. In this work we
explore personalization through a simple framework for federated multi-task learning. We consider
two ‘tasks’: the global objective (Global Obj), and the local objective Fk(vk), which aims to learn a
model using only the data of device k. To relate these tasks, we incorporate a regularization term that
encourages the personalized models to be close to the optimal global model. The resulting bi-level
optimization problem for each device k ∈ [K] is given by:

min
vk

hk(vk;w∗) := Fk(vk) +
λ

2
‖vk − w∗‖2 , s.t. w∗ ∈ arg min

w
G({Fk(w)}k∈[K]) . (Ditto)
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Here the hyperparameter λ controls the interpolation between local and global models. When λ
is set to 0, Ditto is reduced to training local models; as λ grows large, it recovers global model
optimization (Global Obj) (λ→ +∞).

Intuition for Fairness/Robustness Benefits. In addition to improving accuracy via personalization,
we suggest Ditto may offer fairness and robustness benefits. To reason about this, consider a simple
case where the data are homogeneous across devices. Without adversaries, learning a single global
model is optimal for generalization. However, in the presence of adversaries, learning globally might
introduce corruption, while learning local models may not generalize well due to limited sample size.
Ditto with an appropriate value of λ offers a tradeoff between these two extremes: the smaller λ,
the more the personalized models vk can deviate from the (corrupted) global model w, potentially
providing robustness at the expense of generalization. In the heterogeneous case (which can lead to
issues of unfairness as described in Section 2), a finite λ exists to offer robustness and fairness jointly
(see theoretical analysis in Section 3.2 and empirical results in Section 4).

3.1 DITTO SOLVER

To solve Ditto, we propose jointly solving for the global model w∗ and personalized models
{vk}k∈[K] in an alternating fashion, as summarized in Algorithm 1 in Appendix D. Optimization
proceeds in two phases: (i) updates to the global model, w∗, are computed across the network, and
then (ii) the personalized models vk are fit on each local device. The process of optimizing w∗
is exactly the same as optimizing for any objective G(·) in federated settings: If we use iterative
solvers, then at each communication round, each selected device solves the local subproblem of G(·)
approximately (Line 5). For personalization, device k solves the global-regularized local objective
minvk hk(vk;wt) inexactly at each round (Line 6). Due to this alternating scheme, our solver can
scale well to large networks, as it does not introduce additional communication or privacy overheads
compared with existing solvers for G(·).

We note that another natural choice to solve the Ditto objective is to first obtain w∗, and then for
each device k, perform finetuning on the local objective minvk hk(vk;w∗). These two approaches
will arrive at the same solutions in strongly convex cases. In non-convex settings, we observe that
there may be additional benefits of joint optimization: Empirically, the updating scheme tends to
guide the optimization trajectory towards a better solution compared with finetuning starting from
w∗, particularly when w∗ gets corrupted by adversarial attacks (Appendix G.3).

Modularity of Ditto. From the Ditto objective and Algorithm 1, we see that a key advantage of
Ditto is its modularity, i.e., that we can readily use prior art developed for the Global Obj along
with the personalization add-on of hk(vk;w∗), as highlighted in red in Algorithm 1. We discuss its
benefits in terms of optimization, privacy, and robustness in Appendix E.1.

3.2 ANALYZING THE FAIRNESS/ROBUSTNESS BENEFITS OF DITTO IN SIMPLIFIED SETTINGS

We now more rigorously explore the fairness/robustness benefits of Ditto on a class of linear
problems. Throughout, we assume G(·) is the standard objective in FedAvg (McMahan et al., 2017).

To provide intuition, we first examine a toy one-dimensional point estimation problem. Denote
the underlying models for the devices as {wk}k∈[K], wk ∈ R, and let the points on device k,
{xk,1, . . . , xk,n} be observations ofwk with random perturbation, i.e., xk,i = wk+zk,i, where zk,i ∼
N (0, σ2) and are IID. Assume wk ∼ N (θ, τ2), where θ is drawn from the uniform uninformative
prior on R, and τ is a known constant. Here, τ controls the degree of relatedness of the data on
different devices: τ=0 captures the case where the data on all devices are identically distributed while
τ → ∞ results in the scenario where the data on different devices are completely unrelated. At a
high level, we prove that λ∗ should be smaller when there are more local samples, or the devices are
less related, or there are more malicious devices (i.e., stronger attacks) (Theorem 5-8).
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Figure 1: Empirically, the λ∗ given by Theorem 5-8
results in the most accurate, fair, and robust solution
within Ditto’s solution space.
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In Figure 1, we plot average test error, fairness (standard deviation shown as error bars), and robustness
(test error in the adversarial case) across a set of λ’s for both clean and adversarial cases. We see that
in the solution space of Ditto, there exists a specific λ which minimizes the average test error and
standard deviation across all devices at the same time, which is equal to the optimal λ∗ given by our
theory. Figure 2 shows (i) Ditto with λ∗ is superior than learning local or global models, and (ii)
λ∗ should increase as the relatedness between devices (1/τ ) increases.

All results discussed above can be generalized to establish the optimality of Ditto on a class of
linear regression problems (Appendix B.2).

4 EXPERIMENTS
Setup. For each device, we select λ locally based on its local validation data. See Appendix F for
experimental details. Our code is publicly available at github.com/litian96/ditto.
Robustness of Ditto. Following our threat model described in Definition 1, we apply three attacks
to corrupt a random subset of devices. We pick corruption levels until a point where there is a
significant performance drop when training a global model. We compare robustness (Def. 1) of
Ditto with various defense baselines, presenting the results of three strongest defenses in Figure 3.
Ditto achieves the highest accuracy under most attacks.
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Figure 3: Robustness, i.e., average test accuracy on benign devices (Definition 1) on Fashion MNIST. Execution
details and full results are reported in Appendix G.6. Ditto is the most robust under almost all attacks.
Fairness of Ditto. To explore the fairness of Ditto, we compare against TERM (Li et al., 2021) as
a baseline. It is an improved version of the q-FFL (Li et al., 2020d) objective, which has been recently
proposed for fair federated learning. TERM also recovers AFL (Mohri et al., 2019), another fair FL
objective, as a special case. TERM uses a parameter t to offer flexible tradeoffs between fairness and
accuracy. In Table 2 in Appendix G, we compare the proposed objective with global, local, and fair
methods (TERM) in terms of test accuracies and standard deviation. When the corruption level is
high, ‘global’ or ‘fair’ will even fail to converge. Ditto results in more accurate and fair solutions
both with and without attacks.
Addressing Competing Constraints. When training a single global model, fair methods aim to
encourage a more uniform performance distribution, but may be highly susceptible to training-time
attacks in statistically heterogeneous environments. We investigate the test accuracy on benign
devices when learning global, local, and fair models. In the TERM objective, we set t = 1, 2, 5 to
achieve different levels of fairness (the higher, the fairer). We perform the data poisoning attack
(A1 in Def. 1). The results are plotted in Figure 5. As the corruption level increases, we see that
fitting a global model becomes less robust. Using fair methods will be more susceptible to attacks.
When t gets larger, the test accuracy gets lower, an indication that the fair method is overfitting to the
corrupted devices relative to the global baseline.
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Figure 5: Fair methods can overfit to corrupted de-
vices (possibly with large training losses) by imposing
more weights on them.
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Figure 6: Compared with learning a global model,
robust baselines are either robust but not fair, or not
even robust. Ditto lies at the lower right corner.

Next, we apply various strong robust methods under the same attack, and explore the robust-
ness/accuracy and fairness performance. For Krum and multi-Krum (Blanchard et al., 2017), we
assume that the server knows the expected number of malicious devices. Other robust approaches
include: taking the coordinate-wise median of gradients (‘median’), gradient clipping (‘clipping’),
filtering out the gradients with largest norms (‘k-norm’), and taking the gradient with the k-th largest
loss where k is the number of malicious devices (‘k-loss’). From Figure 6, we see that robust
baselines are either (i) more robust than global but less fair, or (ii) fail to provide robustness due to
heterogeneity. Ditto is more robust, accurate, and fair.
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A RELATED WORK

Robustness and fairness are two broad areas of research that extend well beyond the application of
federated learning. In this section we provide precise definitions of the notions of robustness/fairness
considered in this work, and give an overview of prior work in robustness, fairness, and personalization
in the context of federated learning.

Robustness in Federated Learning. Training-time attacks (including data poisoning and model
poisoning) have been extensively studied in prior work Biggio et al. (2012); Gu et al. (2017); Chen
et al. (2017); Shafahi et al. (2018); Liu et al. (2018); Huang et al. (2020); Xie et al. (2020); Wang
et al. (2020); Dumford & Scheirer (2018); Huang et al. (2020). In federated settings, a number of
strong attack methods have been explored, including scaling malicious model updates Bagdasaryan
et al. (2020), collaborative attacking Sun et al. (2020), defense-aware attacks Bhagoji et al. (2019);
Fang et al. (2020), and adding edge-case adversarial training samples Wang et al. (2020).

In terms of defenses, robust aggregation is a common strategy to mitigate the effect of malicious
updates Blanchard et al. (2017); Pillutla et al. (2019); Sun et al. (2019); Li et al. (2019); He et al.
(2020). Other defenses include gradient clipping Sun et al. (2019) or normalization Hu et al.
(2020). While these strategies can improve robustness, they may also produce unfair models
by filtering out informative updates, especially in heterogeneous settings Wang et al. (2020). In
our experiments (Section 4), we compare Ditto with several strong defenses (median, gradient
clipping Sun et al. (2019), Krum, Multi-Krum Blanchard et al. (2017), gradient-norm based anomaly
detector Bagdasaryan et al. (2020), and a new defense proposed herein) and show that Ditto can
improve both robustness and fairness compared with these methods.

Fairness in Federated Learning. We note that there exists a tension between variance and utility in
our fairness definition (Definition 2); in general, a goal is to lower the variance while maintaining a
reasonable average performance (e.g., average test accuracy). To address representation disparity, it
is common to use minimax optimization Mohri et al. (2019); Deng et al. (2020) or flexible sample
reweighting approaches Li et al. (2020d; 2021) to encourage a more uniform quality of service. In
all cases, by up-weighting the importance of rare devices or data, fair methods may not be robust in
that they can easily overfit to corrupted devices (see Section 4). The tension between fairness and
robustness has been observed or studied in previous works, though for different notions of fairness
(equalized odds) or robustness (backdoor attacks), or in centralized settings Chang et al. (2020);
Wang et al. (2020). Recently, Hu et al. (2020) have proposed FedMGDA+, a method targeting fair
and robust FL; however, this work combines classical fairness (minimax optimization) and robustness
(gradient normalization) mechanisms, as opposed to the multi-task framework proposed herein, which
we show can inherently provide both benefits simultaneously.

Personalized Federated Learning. Given the variability of data in federated networks, personal-
ization is a natural approach used to improve accuracy. Numerous works have proposed techniques
for personalized federated learning. Smith et al. (2017) first explore personalized FL via a primal-
dual MTL framework, which applies to convex settings. Personalized FL has also been explored
through clustering (e.g., Ghosh et al., 2020; Sattler et al., 2020), finetuning/transfer learning Zhao
et al. (2018); Yu et al. (2020), meta-learning Jiang et al. (2019); Chen et al. (2018); Khodak et al.
(2019); Fallah et al. (2020); Li et al. (2020a), and other forms of MTL, such as hard parameter
sharing Agarwal et al. (2020); Liang et al. (2020) or the weighted combination method in Zhang et al.
(2021). Our work differs from these approaches by simultaneously learning local and global models
via a global-regularized MTL framework, which applies to non-convex ML objectives.

Similar in spirit to our approach are works that interpolate between global and local models Mansour
et al. (2020); Deng et al. (2021). However, as discussed in Deng et al. (2021), these approaches can
effectively reduce to local minimizers without additional constraints. The most closely related works
are those that regularize personalized models towards their average Hanzely & Richtárik (2020);
Hanzely et al. (2020); Dinh et al. (2020), which can be seen as a form of classical mean-regularized
MTL Evgeniou & Pontil (2004). Our objective is similarly inspired by mean-regularized MTL,
although we regularize towards a global model rather than the average personalized model. As we
discuss in Section 3, one advantage of this is that it allows for methods designed for the global
federated learning problem (e.g., optimization methods, privacy/security mechanisms) to be easily
re-used in our framework, with the benefit of additional personalization. We compare against a range
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of personalized methods empirically in Section 4, showing that Ditto achieves similar or superior
performance across common FL benchmarks.

Finally, a key contribution of our work is jointly exploring the robustness and fairness benefits
of personalized FL. The benefits of personalization for fairness alone have been demonstrated
empirically in prior work (Wang et al., 2019; Hao et al., 2020). Connections between personalization
and robustness have also been explored in Yu et al. (2020), although the authors propose using
personalization methods on top of robust mechanisms. Our work differs from these works by arguing
that MTL itself offers inherent robustness and fairness benefits, and exploring the challenges that
exist when attempting to satisfy both constraints simultaneously.
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B ANALYSIS OF THE FEDERATED MULTI-TASK LEARNING OBJECTIVE
DITTO

Here, we provide theoretical analyses of Ditto, mainly on a class of linear models. In this linear
setting, we investigate accuracy, fairness, and robustness of Ditto. We first discuss some general
properties of Ditto for strongly convex functions in terms of the training performance in Section B.1.
We next present our main results on characterizing the benefits (accuracy, fairness, and robustness)
of Ditto on linear regression in Section B.2. Finally, we present results on a special case of linear
regression (federated point estimation problem examined in Section 3.2) in Section B.3.

B.1 PROPERTIES OF DITTO FOR STRONGLY CONVEX FUNCTIONS

Let the Ditto objective on device k be

hk(w) = Fk(w) + λψ(w), (1)

where Fk is strongly convex, and

ψ(w) :=
1

2
‖w − w∗‖2, (2)

w∗ := arg min
w

 1

K

∑
k∈[K]

Fk(w)

 . (3)

Let
ŵk(λ) = arg min

w
hk(w). (4)

Without any distributional assumptions on the tasks, we first characterize the solutions of the objective
hk(w).
Lemma 1. For all λ ≥ 0,

∂

∂λ
Fk(ŵk(λ)) ≥ 0, (5)

∂

∂λ
ψ(ŵk(λ)) ≤ 0. (6)

In addition, for all k, if Fk(w∗) is finite, then

lim
λ→∞

ŵk(λ) = w∗. (7)

Proof. The proof here directly follows the proof in Hanzely & Richtárik (Theorem 3.1, 2020).

As λ increases, the local empirical training loss Fk(ŵk(λ)) will also increase, and the resulting
personalized models will be closer to the global model. Therefore, λ effectively controls how much
personalization we impose. Since for any device k ∈ [K], training loss is minimized when λ = 0,
training separate local models is the most robust and fair in terms of training performance when we
do not consider generalization.

However, in order to obtain the guarantees on the test performance, we need to explicitly model
the joint distribution of data on all devices. In the next section, we explore a Bayesian framework
on a class of linear problems to examine the generalization, fairness, and robustness of the Ditto
objective, all on the underlying test data.
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B.2 OPTIMALITY OF DITTO FOR FEDERATED LINEAR REGRESSION

We first examine the case without corrupted devices in Section B.2.1. We first derive the Bayes
estimator (which will be the most accurate and robust) for the real model distribution by observing a
finite number of training points. Then, we show that by solving Ditto, we are able to recover the
Bayes estimator with a proper λ∗. In addition, the same λ∗ results in the most fair solution among the
set of solutions of Ditto parameterized by λ. When there are adversaries, we analyze the robustness
benefits of Ditto in Section B.2.2. In particular, we show there exists a λ which leads to the highest
test accuracy across benign devices (i.e., the most robust) and minimizes the variance of the test error
across benign devices (i.e., the most fair) jointly.

Before we proceed, we first state a technical lemma that will be used throughout the analyses.
Lemma 2. Let θ be drawn from the non-informative uniform prior on Rd. Further, let {φk}k∈[K]

denote noisy observations of θ with additive zero-mean independent Gaussian noises with covariance
matrices {Σk}k∈[K]. Let

Σθ :=

 ∑
k∈[K]

Σ−1k

−1 . (8)

Then, conditioned on {φk}k∈[K], we can write θ as

θ = Σθ
∑
k∈[K]

Σ−1k φk + z,

where z is N (0,Σθ) which is independent of {φk}k∈[K].

Lemma 2 is a generalization of Lemma 11 presented in Mahdavifar et al. (2017) (restated in Lemma 3
below) to the multivariate Gaussian case. The proof also follows from the proof in Mahdavifar et al.
(2017).
Lemma 3 (Lemma 11 in Mahdavifar et al. (2017)). Let θ be drawn from the non-informative
uniform prior on R. Further, let {φk}k∈[K] denote noisy observations of θ with additive zero-mean
independent Gaussian noises with variances {σ2

k}k∈[K]. Let

1

σ2
θ

:=
∑
k∈[K]

1

σ2
k

. (9)

Then, conditioned on {φk}k∈[K], we can write θ as

θ = σ2
θ

∑
k∈[K]

φk
σ2
k

+ z,

where z is N (0, σ2
θ) which is independent of {φk}k∈[K].

B.2.1 NO ADVERSARIES: DITTO FOR ACCURACY AND FAIRNESS

We consider a Bayesian framework. Let θ be drawn from the non-informative prior on Rd, i.e.,
uniformly distributed on Rd. We assume that K devices have their data distributed with parameters
{wk}k∈[K]:

wk = θ + ζk, (10)
where ζk ∼ N (0, τ2Id) are I.I.D, and Id denotes the d× d identity matrix. τ controls the degree of
dependence between the tasks on different devices. If τ = 0, then the data on all devices is distributed
according to parameter θ, i.e., the tasks are the same, and if τ →∞, the tasks on different devices
become completely unrelated.

We first derive optimal estimators {wk}k∈[K] for each device wk given observations {Xi, yi}i∈[K].
Lemma 4. Assume that we have

y = Xw + z (11)
where y ∈ Rn, X ∈ Rn×d, and w ∈ Rd, and z ∈ Rn. Further assume that z ∼ N (0, σ2Id) and w
follows the non-informative uniform prior on Rd. Let

ŵ = (XTX)−1XT y. (12)

13
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Then, we have ŵ follows a multi-variate normal distribution as follows:

ŵ ∼ N
(
(XTX)−1XT y, σ2(XTX)−1

)
. (13)

Lemma 5. Let
ŵi := (XT

i Xi)
−1XT

i yi. (14)

Let
Σi := σ2(XT

i Xi)
−1 + τ2Id. (15)

Further, let

Σ
\k
θ :=

 ∑
i∈[K],i6=k

Σ−1i

−1 . (16)

Further let
µ
\k
θ := Σ

\k
θ

∑
i∈[K],i6=k

Σ−1i ŵi (17)

Then, conditioned on {Xi, yi}i∈[K],i6=k, we can write θ as

θ = µ
\k
θ + η,

where η is N (0,Σ
\k
θ ) which is independent of {Xi, yi}i∈[K],i6=k.

Proof. From Lemma 4, we know ŵi is a noisy observation of the underlying wi with additive
covariance σ2(XT

i Xi)
−1. For {wk}k∈[K] defined in our setup, ŵi is a noisy observation of θ with

additive zero mean and covariance Σi := τ2Id + σ2(XT
i Xi)

−1. The proof completes by applying
Lemma 2 to {ŵi}i∈[K],i6=k.

Lemma 6. Let
Σ\kwk

:= Σ
\k
θ + τ2Id. (18)

Further, let

Σwk
:=
(

(Σ\kwk
)−1 + (Σk − τ2Id)−1

)−1
. (19)

Conditioned on {Xi, yi}i∈[K], we have

wk = Σwk
(Σk − τ2Id)−1ŵk + Σwk

(Σ\kwk
)−1µ

\k
θ + ζk, (20)

where ζk ∼ N (0,Σwk
).

Proof. ŵk is a noisy observation of wk with additive noise with zero mean and covariance
σ2(XT

k Xk)−1 (which is Σk − τ2Id). From Lemma 5, we know conditioned on {Xi, yi}i∈[K],i6=k,
µ
\k
θ is a noisy observation of θ with covariance Σ

\k
θ . Hence, with respect to wk, the covariance is

Σ
\k
θ + τ2Id := Σ

\k
wk . The conclusion follows by applying Lemma 2 to ŵk and µ\kθ .

Let the empirical loss function of the linear regression problem on device k be2

Fk(w) =
1

n
‖Xkw − yk‖2 . (21)

Then the estimator ŵk is (XT
k Xk)−1XT yk. Applying the previous lemmas, we obtain an optimal

estimator wk given all training samples from K devices (see (20)). wk is Bayes optimal among all
solutions that can be achieved by any learning method. Next, we examine the Ditto objective and
its solution space parameterized by λ.

Let each device solve the following objective

min
w
hk(w) = Fk(w) +

λ

2
‖w − w∗‖2 , s.t. w∗ =

1

K
arg min

w

K∑
k=1

Fk(w). (22)

2For ease of notation, we assume each device has the same number of training samples. It is straightforward
to extend the current analysis to allow for varying number of samples per device.
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The local empirical risk minimizer for each device k is

ŵk(λ) =

(
1

n
X>k Xk + λI

)−1(
1

n
X>k Yk + λw∗

)
(23)

=

(
1

n
X>k Xk + λI

)−1((
1

n
X>k Xk

)
ŵk + λ

K∑
k=1

(X>X)−1X>k Xkŵk

)
(24)

We next prove that for any k ∈ [K], ŵk(λ) with a specific λ can achieve the optimal wk.
Theorem 1. Assume for any 1 ≤ i ≤ K, XT

i Xi = βId for some constant β. Let λ∗ be the optimal
λ that minimizes the test performance on device k, i.e.,

λ∗ = arg min
λ

E
{
Fk(ŵk(λ))| ŵk, µ\kθ

}
. (25)

Then,

λ∗ =
σ2

nτ2
. (26)

Proof. Notice that

arg min
λ

E
{
Fk(ŵk(λ))|ŵk, µ\kθ

}
= arg min

λ
E
{
‖Xkŵk(λ)− (Xkwk + zk)‖2|ŵk, µ\kθ

}
(27)

= arg min
λ

E
{
‖Xk (ŵk(λ)− wk) ‖2|ŵk, µ\kθ

}
(28)

= arg min
λ

E
{
‖wk − ŵk(λ)‖2 |ŵk, µ\kθ

}
. (29)

Plug in XT
k Xk = βI into (20) and (24) respectively, we have the optimal estimator wk is

wk =

(
K − 1

σ2

β +Kτ2
+

β

σ2

)−1
β

σ2
ŵk +

(
K − 1

σ2

β +Kτ2
+

β

σ2

)−1
β

σ2 +Kτ2β

∑
i∈[K],i6=k

ŵi + ζk,

(30)

and ŵk(λ) is

ŵk(λ) =

(
n

β + nλ

)(β
n

+
λ

K

)
ŵk +

λ

K

∑
i∈[K],i6=k

ŵi

 . (31)

Taking wk and ŵk(λ) into

λ∗ = arg min
λ

E
{
‖wk − ŵk(λ)‖22 |µ

\k
θ , ŵk

}
(32)

gives λ∗ = σ2

nτ2 , as ŵk(λ∗) is the MMSE estimator of wk given the observations.

Remark 1. We note that by using λ∗ in Ditto, we not only achieve the most accurate solution
for the objective, but also we achieve the most accurate solution of any possible federated linear
regression algorithm in this problem, as Ditto with λ∗ realizes the MMSE estimator for wk.

We have derived an optimal λ∗ = σ2

nτ2 for Ditto in terms of generalization. Recall that we define
fairness as the variance of the performance across all devices (Hashimoto et al., 2018; Li et al., 2020d).
Next, we prove that the same λ∗ that minimizes the expected MSE also achieves the optimal fairness
among all Ditto solutions.
Theorem 2. Assume for any 1 ≤ i ≤ K, XT

i Xi = βId for some constant β. Among all possible
solutions Ditto parameterized by λ, λ∗ results in the most fair performance across all devices
when there are no adversaries, i.e., it minimizes the variance of test performance (test loss) across all
devices.
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Proof. Denote the variance of test performance (loss) across K devices as
varK

{
‖Xkŵk(λ)− yk‖22

}
. Let

Êk{ak} :=
1

K

∑
k∈[K]

ak. (33)

Then

arg min
λ

varK
{
‖Xkŵk(λ)− yk‖22

}
= arg min

λ
varK

{
‖Xkŵk(λ)− (Xkwk + zk)‖22

}
(34)

= arg min
λ

varK
{
‖Xk(ŵk(λ)− wk)‖22

}
(35)

= arg min
λ

varK
{
‖ŵk(λ)− wk‖22

}
(36)

= arg min
λ

ÊK

{(
‖wk − ŵk‖22

)2}− (ÊK {‖wk − ŵk(λ)‖22
})2

.

(37)

Note that

wk − ŵk(λ) = ζ + ak, (38)

where

ak = ŵk(λ∗)− ŵk(λ), (39)

and λ∗ = σ2

nτ2 .

We have

ÊK

{(
‖wk − ŵk‖22

)2}− (ÊK {‖wk − ŵk(λ)‖22
})2

(40)

= ÊK


(

d∑
i

(wki − ŵk(λ)i)
2

)2
−

(
ÊK

{
d∑
i

(wki − ŵk(λ)i)
2

})2

(41)

= ÊK


(

d∑
i

(ζi + aki)
2

)2
−

(
ÊK

{
d∑
i

(ζi + aki)
2

})2

, (42)

where wki, ŵk(λ)i, ζi, and aki denotes the i-th dimension of wk, ŵk(λ), ζ , and ak and d is the model
dimension.

We next expand the variance by decomposing it into two parts. We note

ÊK


(

d∑
i

(ζi + aki)
2

)2
−

(
ÊK

{
d∑
i

(ζi + aki)
2

})2

(43)

=

d∑
i

Êk
{

(ζi + aki)
4
}
−

d∑
i

(
ÊK

{
(ζi + aki)

2
})2

(44)

+ 2
∑

i,j∈[d],i6=j

ÊK

{
(ζi + aki)

2 (
ζj + akj

)2}− 2
∑

i,j∈[d],i6=j

ÊK

{
(ζi + aki)

2
}
ÊK

{(
ζj + akj

)2}
.

(45)
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For any i ∈ [d], we have

E

{
ÊK

{
(ζi + aki)

4
}
−
(
ÊK

{
(ζi + aki)

2
})2∣∣∣∣µ\kθ , ŵk} (46)

= E

{
ÊK

{
ζ4i + 6ζ2i a

2
ki + a4ki

}
−
(
ÊK

{
ζ2i + a2ki

})2∣∣∣∣µ\kθ , ŵk} (47)

= E

{
ÊK

{
ζ4i + 6ζ2i a

2
ki + a4ki

}
−
(
ÊK

{
ζ2i
})2
− 2ÊK

{
ζ2i
}
ÊK

{
a2ki
}
−
(
ÊK

{
a2ki
})2∣∣∣∣µ\kθ , ŵk}

(48)

= 3σ4
w + 6σ2

wÊK
{
a2ki
}

+ ÊK
{
a4ki
}
− σ4

w − 2σ2
wÊK

{
a2ki
}
−
(
ÊK

{
a2ki
})2

(49)

= 2σ4
w + 4σ2

wÊK
{
a2ki
}

+ ÊK
{
a4ki
}
−
(
ÊK

{
a2ki
})2

, (50)

where σw is the i-th diagonal of Σwk
which is the same across all k’s and all dimensions, and we have

used the fact that we can swap expectations, and E{ζ4i } = 3σ4
w, given that ζi is Gaussian distributed

and Σwk
is a diagonal matrix.

For any i, j ∈ [d], i 6= j, we have

E
{
ÊK (ζi + aki)

2
(ζj + akj)

2
∣∣∣µ\kθ , ŵk}− E { ÊK (ζi + aki)

2
ÊK (ζj + akj)

2
∣∣∣µ\kθ , ŵk}

(51)

= Êk{a2kia2kj} − Êk{a2ki}Êk{a2kj}, (52)

where we have used the fact that Σwk
is a diagonal matrix.

Plugging (50) and (52) into (44) and (45) yields

E
{

varK
{
‖ŵk(λ)− wk‖22

}∣∣µ\kθ , ŵk} (53)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+

∑
i

Êk{a4ki} −
∑
i

(
Êk{a2ki}

)2
+ 2

∑
i6=j

(
Êk{a2kia2kj} − Êk{a2ki}Êk{a2kj}

)
(54)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+

∑
i

Êk{a4ki}+ 2
∑
i6=j

Êk{a2kia2kj} − (
∑
i

(
Ek{a2ki}

)2
+ 2

∑
i 6=j

Êk{a2ki}Êk{a2kj)})

(55)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+ Êk{(

∑
i

a2ki)
2} − (

∑
i

Êk{a2ki})2 (56)

= 2dσ4
w +

∑
i

4σ2
wÊk{a2ki}+

1

K

∑
k

(
∑
i

a2ki)
2 − (

1

K

∑
k

∑
i

a2ki)
2 ≥ 2dσ2

w, (57)

where setting {aki}1≤k≤K,1≤i≤d = 0 achieves the minimum.

Observations. From the optimal λ∗ = σ2

nτ2 for mean test accuracy and variance of the test accuracy,
we have the following observations.

• Test error and variance can be jointly minimized with one λ.

• As n→∞, λ∗ → 0, i.e., when each local device has an infinite number of samples, there is no
need for federated learning, and training local models is optimal in terms of generalization and
fairness.

• As τ → ∞, λ∗ → 0, i.e., if the data on different devices (the tasks) are unrelated, then training
local models is optimal; On the other hand, as τ → 0, λ∗ →∞, i.e., if the data across all devices
are identically distributed, or equivalently if the tasks are the same, then training a global model is
the best we can achieve.
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So far we have proved that the same λ∗ achieves the best performance (expected mean square error)
for any device k and fairness (variance of mean square error) without considering adversaries. In
Section B.2.2 below, we analyze the benefits of Ditto for fairness and robustness in the presence of
adversaries.

B.2.2 WITH ADVERSARIES: DITTO FOR ACCURACY, FAIRNESS, AND ROBUSTNESS

We look at a specific type of label poisoning attack defined in our threat model (Definition 1).
Let Ka and Kb ≥ 1 denote the number of malicious and benign devices, respectively, such that
K = Ka +Kb.

Definition 3. We say that a device k is a benign device if wk ∼ θ+N (0, τ2Id); and we say a device
k is a malicious device (or an adversary) if wk ∼ θ +N (0, τ2aId) where τa > τ .

As mentioned in Definition 2 and 1, in the presence of adversaries, we measure fairness as the
performance variance on benign devices, and robustness as the average performance across benign
devices. We next characterize the benefits of Ditto under such metrics.

Lemma 7. Let wk be the underlying model parameter of a benign device k. Let

ŵi := (XT
i Xi)

−1XT
i yi, i ∈ [K]. (58)

Let

Σ\kw =
1

(K − 1)2

 ∑
i∈[Kb],i6=k

(
σ2(XT

i Xi)
−1 + τ2Id

)
+

∑
i∈[Ka],i6=k

(
σ2(XT

i Xi)
−1 + τ2aId

) ,

(59)

and

Σ−1w,a = (σ2(XT
k Xk)−1)−1 + (Σ\kw + τ2Id)

−1. (60)

Conditioned on observations ŵk and ŵK\k := 1
K−1

∑
i6=k,i∈[K] ŵi, we have

wk = Σw,a(σ2(XT
k Xk)−1)−1ŵk + Σw,a(Σ\kw + τ2Id)

−1ŵK\k + ζk, (61)

where ζk ∼ N (0,Σw,a).

Proof. For malicious devices i ∈ [Ka] and i 6= k, the additive covariance of wi with respect to θ is
σ2(XT

i Xi)
−1+τ2aId. For benign devices i ∈ [Kb] and i 6= K, the covariance is σ2(XT

i Xi)
−1+τ2Id.

Therefore, the covariance of ŵK\k is Σ
\k
w . Hence given ŵK\k, wk is Gaussian with covariance

Σ
\k
w + τ2Id. ŵK\k can be viewed as a noisy observation of wk with covariance Σ

\k
w + τ2Id. ŵk is a

noisy observation of wk with covariance σ2(XT
k Xk)−1. The proof follows by applying Lemma 2 to

ŵk and ŵK\k.

Theorem 3. Assume for any 1 ≤ i ≤ K, XT
i XI = βId for some constant β. Let k be a benign

device. Let λ∗a be the optimal λ that minimizes the test performance on device k, i.e.,

λ∗ = arg min
λ

E
{
Fk( ŵk(λ))| ŵk, ŵK\k

}
. (62)

Then,

λ∗a =
σ2

n

K

Kτ2 + Ka

K−1 (τ2a − τ2)
. (63)

Proof. We obtain λ∗a following the proof of Theorem 1.

Theorem 4. Among all Ditto solutions parameterized by λ, λ∗a results in the most fair performance
across all benign devices, i.e., it minimizes the variance of test performance (test mean square error)
on benign devices.
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Proof. Similarly, we look at the variance of the test loss across benign devices:

arg min
λ

E
{

varKb

{
‖Xkŵk(λ)− yk‖22

}}
= arg min

λ
E
{

varKb

{
‖wk(λ)− wk‖22

}}
(64)

= arg min
λ

ÊKb

{(
‖wk − ŵk‖22

)2}− (ÊKb

{
‖wk − ŵk(λ)‖22

})2
.

(65)

The rest of the proof is the same as the proof of Theorem 2, except that we set ak = ŵk(λ) −
ŵk(λ∗a).

Remark 2. For any benign device k, the solution we obtain by solving Ditto with λ∗a is the most
robust solution one could obtain among any federated point estimation method given observations
ŵk and ŵK\k. λ∗a also results in a most fair model in the solution space of Ditto parameterized by
λ.

Lemma 8. The expected test error minimized at λ∗a is dσ2
w,a; and the variance of the test loss

minimized at λ∗a is 2dσ4
w,a, where σw,a denotes the diagonal element of Σw,a.

Proof. For the expected test performance, we note that

E
{
‖wk − ŵk(λ∗a)‖2

∣∣ ŵK\k, ŵk} = E[‖diag(Σw,k)‖2] = dσ2
w,k. (66)

For variance, as ak = 0 if λ = λ∗a, from (57), we get

varKb

{
‖wk − ŵk(λ∗a)‖2

}
= 2dσ4

w,k. (67)

Observations. From λ∗a, we have the following interesting observations.

• Mean test error on benign devices (robustness) and variance of the performance across benign
devices (fairness) can still be minimized with the same λa in the presence of adversaries.

• As τa → ∞, λ∗a → 0, i.e., training local models is optimal in terms of robustness and fairness
when adversary’s task may be arbitrarily far from the the task in the benign devices.
• As τ → 0, if τa > 0, λ∗a <∞, which means that learning a global model is not optimal even with

homogeneous data in the presence of adversaries.
• λ∗a is a decreasing function of the number (Ka) and the capability (τa) of the corrupted devices. In

other words, as the attacks become more adversarial, we need more personalization.
• The smallest test error is σ2

w,a, and the optimal variance is 2σ4
w,a, which are both increasing with

Ka (number of adversarial devices) or τa (the power of adversary) by inspecting (59) and (60).
This reveals a fundamental tradeoff between fairness and robustness.

Discussion. Through our analysis, we prove that Ditto with an appropriate λ is more accurate,
robust, and fair compared with training global or local models on the problem described in B.2. We
provide closed-form solutions for λ∗ across different settings (with and without adversaries), and
show that Ditto can achieve fairness and robustness jointly. In the future, we plan to generalize the
current theoretical framework to more general models. In the next section, we present a special case
of the current analysis, a federated point estimation problem, which is also studied in Section 3.2 as a
motivating example.

B.3 OPTIMALITY OF DITTO FOR FEDERATED POINT ESTIMATION

We consider the one-dimensional federated point estimation problem, which is a special case of
linear regression. Similarly, Let θ be drawn from the non-informative prior on R. We assume that K
devices have their data distributed with parameters {wk}k∈[K].

wk = θ + ζk, (68)

where ζk ∼ N (0, τ2) are IID.
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Let each device have n data points denoted by xk = {xk,1, . . . , xk,n}, such that

xk,i = wk + zk,i, (69)

where zk,i ∼ N (0, σ2) and are IID.

Assume that

Fk(w) =
1

2

w − 1

n

∑
i∈[n]

xk,i

2

, (70)

and denote by ŵk the minimizer of the empirical loss Fk. It is clear that

ŵk =
1

n

∑
i∈[n]

xk,i. (71)

Further, let

w∗ := arg min
w

 1

K

∑
k∈[K]

Fk(w)

 . (72)

It is straightforward calculation to verify that

w∗ =
1

nK

∑
i∈[n]

∑
k∈[K]

xk,i =
1

K

∑
k∈[K]

ŵk. (73)

Lemma 9. Denote by ŵk(λ) the minimizer of gk. Then,

ŵk(λ) =
λ

1 + λ
w∗ +

1

1 + λ
ŵk (74)

=
λ

(1 + λ)K

∑
j 6=k

ŵj +
K + λ

(1 + λ)K
ŵk. (75)

Let

σ2
n :=

σ2

n
, (76)

and
ŵK\k :=

1

K − 1

∑
j 6=k

ŵj . (77)

Lemma 10. Given observations ŵK\k and ŵk, wk is Gaussian distributed and given by

wk =
σ2
w

σ2
n

ŵk +
(K − 1)σ2

w

Kτ2 + σ2
n

ŵK\k + ξ, (78)

where
1

σ2
w

=
1

σ2
n

+
K − 1

Kτ2 + σ2
n

, (79)

and
ξ ∼ N

(
0, σ2

w

)
. (80)

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Lemma 6.

Theorem 5. Let λ∗ be the optimal λ that minimizes the test performance, i.e.,

λ∗ = arg min
λ
E
{

(wk − ŵk(λ))2
∣∣ ŵK\k, ŵk} . (81)

Then,

λ∗ =
σ2
n

τ2
=

σ2

nτ2
. (82)
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Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 1.

Theorem 6. Among all Ditto’s solutions, λ∗ results in the most fair performance across all devices
when there are no adversaries, i.e., it minimizes the variance of test performance (test mean square
error).

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 2.

Similarly, the adversarial case presented below (including setups, lemmas, and theorems) is also a
special case of the adversarial scenarios for linear regression.

Let Ka and Kb ≥ 1 denote the number of adversarial and benign devices, respectively, such that
K = Ka +Kb.

Definition 4. We say that a device k is a benign device if wk ∼ θ+N (0, τ2); and we say a device k
is a malicious device (or an adversary) if wk ∼ θ +N (0, τ2a ) where τa ≥ τ .

Lemma 11. Let wk be the parameter associated with a benign device. Given observations ŵK\k :=
1

K−1
∑
j 6=k ŵj and ŵk, wk is Gaussian distributed and given by

wk =
σ2
w,a

σ2
n

ŵk +
(K − 1)σ2

w,a

Kτ2 + σ2
n + Ka

K−1 (τ2a − τ2)
ŵK\k + ξa, (83)

where
1

σ2
w,a

=
1

σ2
n

+
K − 1

Kτ2 + σ2
n + Ka

K−1 (τ2a − τ2)
, (84)

and
ξa ∼ N

(
0, σ2

w,a

)
. (85)

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Lemma 7.

Theorem 7. Let wk be a benign device. Let λ∗a be the optimal λ that minimizes the test performance,
i.e.,

λ∗a = arg min
λ
E
{

(wk − ŵk(λ))2
∣∣ ŵK\k, ŵk} . (86)

Then,

λ∗a =
σ2

n

K

Kτ2 + Ka

K−1 (τ2a − τ2)
. (87)

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 3.

Theorem 8. Among all solutions of Objective (Ditto) parameterized by λ, λ∗a results in the most
fair performance across all benign devices, i.e., it minimizes the variance of test performance (test
mean square error) on benign devices.

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Theorem 4.

Lemma 12. The expected test error minimized at λ∗a is σ2
w,a; and the variance of the test performance

minimized at λ∗a is 2σ4
w,a.

Proof. The proof follows by setting Xk = 1n×1 (k ∈ [K]) in Lemma 8.
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C OTHER PERSONALIZATION SCHEMES AND REGULARIZERS

Other Personalization Schemes. As discussed in Section 2, personalization is a widely-studied
topic in FL. Our intuition in Ditto is that personalization, by reducing reliance on the global model,
can reduce representation disparity (i.e., unfairness) and potentially improve robustness. It is possible
that other personalization techniques beyond Ditto offer similar benefits: We provide some initial,
encouraging results on this in Appendix G.2. However, we specifically explore Ditto due to its
simple nature, scalability, and strong empirical performance. Ditto is closely related to works
that regularize personalized models towards their average (Hanzely & Richtárik, 2020; Hanzely
et al., 2020; Dinh et al., 2020), similar to classical mean-regularized MTL (Evgeniou & Pontil,
2004); Ditto differs by regularizing towards a global model rather than the average personalized
model. We find that this provides benefits in terms of analysis (Section 3.2), as we can easily reason
about Ditto relative to the global (λ→∞) vs. local (λ→ 0) baselines; empirically, in terms of
accuracy, fairness, and robustness (Section 4); and practically, in terms of the modularity it affords
our corresponding solver (Section 3.1).

Other Regularizers. To encourage the personalized models vk to be close to the optimal global
model w∗, there are choices beyond the L2 norm that could be considered, e.g., using a Bregman
divergence-based regularizer or reshaping the L2 ball using the Fisher information matrix. Under
the logistic loss (used in our experiments), the Bregman divergence will reduce to KL divergence,
and its second-order Taylor expansion will result in an L2 ball reshaped with the Fisher information
matrix. Such regularizers are studied in other related contexts like continual learning (Kirkpatrick
et al., 2017; Schwarz et al., 2018), multi-task learning (Yu et al., 2020), or finetuning for language
models (Jiang et al., 2020). However, in our experiments (Appendix G.2), we find that incorporating
approximate empirical Fisher information (Yu et al., 2020; Kirkpatrick et al., 2017) or symmetrized
KL divergence (Jiang et al., 2020) does not improve the performance over the simple L2 regularized
objective, while adding non-trivial computational overhead.
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D ALGORITHMS

In this section, we first present the general Ditto solver in Algorithm 1 below. The personalization
add-on is highlighted in red. In our experiments (all except Table 5), we use FedAvg as the objective
and solver for G(·), under which we simply let device k run local SGD on Fk (Line 5). We provide a
simplified algorithm definition using FedAvg for the w∗ update in Algorithm 2.

Algorithm 1: Ditto for Personalized FL
1 Input: K, T , s, λ, η, w0, {v0k}k∈[K]

2 for t = 0, · · · , T − 1 do
3 Server randomly selects a subset of devices St, and sends the current global model wt to

them
4 for device k ∈ St in parallel do
5 Solve the local sub-problem of G(·) inexactly starting from wt to obtain wtk:

wtk ← UPDATE_GLOBAL(wt,∇Fk(wt))
/* Solve hk(vk;wt) */

6 Update vk for s local iterations:
vk = vk − η(∇Fk(vk) + λ(vk − wt))

Send ∆t
k := wtk − wt back

7 Server aggregates {∆t
k}:

wt+1 ← AGGREGATE
(
wt, {∆t

k}k∈{St}
)

8 return {vk}k∈[K] (personalized models), wT (global model)

Algorithm 2: Ditto for Personalized FL in the case of G(·) being FedAvg (McMahan et al.,
2017)

1 Input: K, T , s, λ, ηg , ηl, w0, pk, {v0k}k∈[K]

2 for t = 0, · · · , T − 1 do
3 Server randomly selects a subset of devices St, and sends wt to them
4 for device k ∈ St in parallel do
5 Sets wtk to wt and updates wtk for r local iterations on Fk:

wtk = wtk − ηg∇Fk(wtk)

6 Updates vk for s local iterations:
vk = vk − ηl(∇Fk(vk) + λ(vk − wt)

7 Sends ∆t
k := wtk − wt back

8 Server updating wt+1 as

wt+1 ← wt +
1

|St|
∑
k∈St

∆t
k

9 return {vk}k∈[K] (personalized), wT (global)
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E CONVERGENCE ANALYSIS

To analyze the convergence behavior of Algorithm 1 and 2, we first state a list of common assumptions
below.

• For k ∈ [K], Fk is µ-strongly convex and L-smooth.

• For k ∈ [K], the variance of stochastic gradients of Fk within each device is bounded:

E[‖∇Fk(wt, ξt)−∇Fk(wt)‖2] ≤ σ2, (88)

where ξt denotes mini-batch data.

• The expectation of stochastic gradients is uniformly bounded at all devices and all iterations,
i.e.,

E[‖∇Fk(wt, ξt)‖2] ≤ G2
1. (89)

Let w∗ be defined as
w∗ := min

w
G(F1(w), . . . FK(w)) (90)

i.e., w∗ is the optimal global model for G(·).

We introduce an additional assumption on the distance between personalized models and the optimal
global model:

• The expectation of the distance between personalized models and the optimal global model
is bounded at all iterations, i.e., for any vk and k ∈ [K],

E[‖vk − w∗‖2] ≤M2. (91)

Further let

v∗k = arg min
v

hk(v;w∗), (92)

i.e., v∗k is the personalized model for device k. We first characterize the progress of updating
personalized models for one step under a general G(·).

Lemma 13 (Progress of one step). Under assumptions above, let device k get selected with probability
pk at each communication round, with decaying local step-size 2

(t+1)(µ+λ)pk
, at each communication

round t, we have

E[‖vt+1
k − v∗k‖2] ≤

(
1− 2

t+ 1

)
E[‖vt − v∗‖2] +

4(G1 + λM)2

(t+ 1)2(µ+ λ)2p2k

+
4λ2

(t+ 1)2(µ+ λ)2p2k
E[‖wt − w∗‖2] +

8λ(G1 + λM)

(t+ 1)2(µ+ λ)2p2k

√
E[‖wt − w∗‖2]

+
4λ

(t+ 1)(µ+ λ)pk

√
E[‖vtk − v∗k‖2]E[‖wt − w∗‖2]. (93)

Proof. Denote g(vtk;wt) as the stochastic gradient of hk(vtk;wt). Let It indicate if device k is
selected at the t-th round, and E[It] = pk.

E[‖vt+1
k − v∗k‖2] = E[‖vtk − ηItg(vtk;wt)− v∗k‖2] (94)

= E[‖vtk − v∗k‖2] + η2E[‖Itg(vtk;wt)‖2] + 2ηE〈Itg(vtk;wt), v∗k − vtk〉 (95)

≤ (1− (µ+ λ)ηpk)E[‖vtk − v∗k‖2] + η2E[‖g(vtk;wt)‖2] + 2ηpkE[h(v∗k;wt)− h(vtk;wt)]
(96)

≤ (1− (µ+ λ)ηpk)E[‖vtk − v∗k‖2]

+ η2E[‖g(vtk;w∗)‖2] + η2λ2E[‖wt − w∗‖2] + 2η2λE[‖g(vtk;w∗)‖‖wt − w∗‖]
+ 2ηpk(h(v∗k;w∗)− E[h(vtk;w∗)]) + 2ηpkλE[‖vtk − v∗k‖‖wt − w∗‖]. (97)
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Further, note

E[‖g(vtk;w∗)‖2] = E[‖∇Fk(vtk) + λ(vtk − w∗)‖2] ≤ E[‖∇Fk(vtk)‖2] + λ2E[‖vtk − w∗‖2]

+ 2λE[‖∇Fk(vtk)‖‖vtk − w∗‖] (98)

≤ G2
1 + λ2M2 + 2λG1M. (99)

Plug it into (97),

E[‖vt+1
k − v∗k‖2] ≤ (1− (µ+ λ)ηpk)E[‖vtk − v∗k‖2] + η2(G2

1 + λ2M2 + 2λG1M) + η2λ2E[‖wt − w∗‖2]

+ 2η2λ(G1 + λM)
√
E[‖wt − w∗‖2] + 2ηpkλ

√
E[‖vtk − v∗k‖2]E[‖wt − w∗‖2].

(100)

where the last step is due to E[XY ] ≤
√
E[X2]E[Y 2]. The Lemma then holds by taking η =

2
(t+1)(µ+λ)pk

.

Lemma 13 relates E[‖vt+1
k − v∗k‖2] with E[‖vtk− v∗k‖2] and E[‖wtk−w∗‖2]. Based on this, we prove

that personalized models can inherit the convergence rate of the global model wt for any G(·).
Theorem 9 (Relations between convergence of global and personalized models). Under the as-
sumptions above, if there exists g(t) such that limt→∞ g(t) = 0, E[‖wt − w∗‖2] ≤ g(t), and
g(t+1)
g(t) ≥ 1−g(t), then there exists C <∞ such that for any device k ∈ [K], E[‖vtk−v∗k‖2] ≤ Cg(t)

with a local learning rate η = 2g(t)
(µ+λ)pk

.

Proof. We proceed the proof by induction. First, for any constant C >
E[‖v0k−v

∗
k‖

2]
g(0) , E[‖v0k−v∗k‖2] ≤

Cg(0). If E[‖vtk − v∗k‖2] ≤ Cg(t) holds, then for t+ 1, from Lemma 13,

E[‖vtk+1 − v∗k‖2] ≤ (1− 2g(t))Cg(t) + g(t)2
4

p2k

(
(G1 + λM)2

(µ+ λ)2
+ g(t) +

2(G1 + λM)
√
g(t)

µ+ λ

)

+ g(t)2
4λ
√
C

(µ+ λ)
(101)

≤ (1− 2g(t))Cg(t) + Cg(t)2 (102)

holds for some C <∞. Hence,

E[‖vtk+1 − v∗k‖2] ≤ (1− 2g(t))Cg(t) + Cg(t)2 (103)
= (1− g(t))Cg(t) (104)
≤ Cg(t+ 1), (105)

completing the proof.

Using Theorem 9, we can directly plug in the convergence analyses in previous works for any G(·).
For instance, when the global objective and its solver are those of FedAvg, we can obtain an O(1/t)
convergence rate for Ditto under suitable conditions, as described in Corollary 1 below.
Corollary 1 (Convergence of personalized models). Under the assumptions above, if the global
objective G(·) is FedAvg, then under Algorithm 2, for k ∈ [K],

E[‖vtk − v∗k‖2] = O(1/t). (106)

Proof. From Li et al. (2020e) Theorem 2, we know the global model for FedAvg converges at a rate
of O(1/t), i.e.,

E[‖wt − w∗‖2] ≤ C ′

t+B
‖w1 − w∗‖2 ≤ C

t+ 1
, (107)

where C,C ′, B are constants. Setting g(t) = C
t+1 in Theorem 9, it follows that E[‖vtk − v∗k‖2] =

O(1/t).
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E.1 MODULARITY OF DITTO

From the Ditto objective and Algorithm 1, we see that a key advantage of Ditto is its modularity,
i.e., that we can readily use prior art developed for the Global Obj along with the personalization
add-on of hk(vk;w∗), as highlighted in red. This has several benefits:

• Optimization: It is possible to plug in other methods beyond FedAvg (e.g., Li et al., 2020c;
Karimireddy et al., 2020; Reddi et al., 2021) in Algorithm 1 to update the global model, and inherit
the convergence benefits, if any (Theorem 9).

• Privacy: Ditto communicates the same information over the network as typical FL solvers for
the global objective, thus preserving privacy or communication benefits for the global objective
and its respective solver.

• Robustness: Beyond the inherent robustness benefits of personalization, robust global methods can
be used with Ditto to further improve performance (see Appendix G.5).

In particular, while not the main focus of our work, we note that Ditto may offer a better privacy-
utility tradeoff than training a global model. For instance, when training Ditto, if we fix the number
of communication rounds and add the same amount of noise per round to satisfy differential privacy,
Ditto consumes exactly the same privacy budget as normal global training, while yielding higher
accuracy via personalization (Section 4). Similar benefits have been studied, e.g., via finetuning
strategies (Yu et al., 2020).
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F EXPERIMENTAL DETAILS

F.1 DATASETS AND MODELS

We summarize the datasets, corresponding models, and tasks in Table 1 below. We evaluate the
performance of Ditto with both convex and non-convex models across a set of FL benchmarks.
In our datasets, we have both image data (FEMNIST, CelebA, Fashion MNIST), and text data
(StackOverflow).

Table 1: Summary of datasets.

Datasets # Devices Data Partitions Models Tasks
Vehicle (Duarte & Hu, 2004)3 23 natural (each device is a vehicle) linear SVM binary classification
FEMNIST (Cohen et al., 2017) 205 natural (each device is a writer) CNN 62-class classification
CelebA (Liu et al., 2015) 515 natural (each device is a celebrity) CNN binary classification
Fashion MNIST (Xiao et al., 2017) 500 synthetic (assign 5 classes to each device) CNN 10-class classification
StackOverflow (TFF)4 400 natural (each device is a user) logistic regression 500-class tag prediction
FEMNIST (skewed) (Cohen et al., 2017) 100 synthetic (assign 5 classes to each device) CNN 62-class classification

FEMNIST is Federated EMNIST, which is EMNIST (Cohen et al., 2017) partitioned by the writers of
digits/characters created by a previous federated learning benchmark (Caldas et al., 2018). We have
two versions of FEMNIST in this work under different partitions with different levels of statistical
heterogeneity. The manually-partitioned version is more heterogeneous than the naturally-partitioned
one, as we assign 5 classes to each device. We show that the benefits of Ditto can be more
significant on the skewed FEMNIST data (Table 9). All results shown in the main text are based on
the natural partition. We downsample the number of data points on each device (following the power
law) for Vehicle. For FEMNIST, CelebA, and StackOverflow, we randomly sample devices (users)
from the entire dataset. We use the full version of Fashion MNIST (which has been used in previous
FL works (Bhagoji et al., 2019)), and assign 5 classes to each device.

F.2 PERSONALIZATION BASELINES

We elaborate on the personalization baselines used in our experiments (Table 3) which allow for
partial device participation and local updating. We consider:

• APFL (Deng et al., 2021), which proposes to interpolate between local and global models for
personalization. While it can reduce to solving local problems (without constraints on the solution
space) as pointed out in Deng et al. (2021), we find that in neural network applications, it has some
personalization benefits, possibly due to the joint optimization solver.

• Elastic Weight Consolidation (EWC), which takes into account the Fisher information when
finetuning from the optimal global model (Kirkpatrick et al., 2017; Yu et al., 2020). The local
objective is minw Fk(w) + λ

2

∑
iFii · (w[i]− w∗[i])2 where [i] denotes the index of parameters

and Fii denotes the i-th diagonal of the empirical Fisher matrix F estimated using a data batch.

• L2SGD, which regularizes personalized models towards their mean (Hanzely & Richtárik, 2020).
The proposed method requires full device participation once in a while. However, to remain
consistent with the other solvers, we use their objective but adopt a different solver with partial
device participation—each selected local device solving minw Fk(w) + λ

2 ‖w − w̄‖2 where w̄ is
the current mean of all personalized models w̄ = 1

N

∑N
k=1 wk.

• Mapper, which is one of the three personalization methods proposed in Mansour et al. (2020) that
needs the minimal amount of meta-information. Similar to APFL, it is also motivated by model
interpolation.

• Per-FedAvg (HF) (Fallah et al., 2020) which applies MAML (Finn et al., 2017) to personal-
ize federated models with an Hessian-product approximation to approximate the second-order
gradients.

2http://www.ecs.umass.edu/~mduarte/Software.html
3https://www.tensorflow.org/federated/api_docs/python/tff/simulation/

datasets/stackoverflow/load_data.
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• Symmetrized KL constrains the symmetrized KL divergence between the prediction of finetuned
models and that of the initialization. Specifically, in our setting, the local objective is minw Fk(w)+
λ
2 (DKL(f(w)||f(w∗)) +DKL(f(w∗)||f(w))) where DKL(P ||Q) is the KL-divergence between
P and Q, and f(·) denotes the softmax probability for classification.

G ADDITIONAL AND COMPLETE EXPERIMENT RESULTS

G.1 FAIRNESS OF DITTO

Table 2: Average (standard deviation) test accuracy to benchmark performance and fairness (Definition 2) on
Fashion MNIST and FEMNIST. Ditto is more fair and accurate.

Fashion A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global .911 (.08) .897 (.08) .855 (.10) .753 (.13) .900 (.08) .882 (.09) .857 (.10) .753 (.10) .551 (.13) .275 (.12)
local .876 (.10) .874 (.10) .876 (.11) .879 (.10) .874 (.10) .876 (.11) .879 (.10) .877 (.10) .874 (.10) .876 (.11)
fair (TERM, t=1) .909 (.07) .751 (.12) .637 (.13) .547 (.11) .731 (.13) .637 (.14) .635 (.14) .653 (.13) .601 (.12) .131 (.16)
Ditto .943 (.06) .944 (.07) .937 (.07) .907 (.10) .938 (.07) .930 (.08) .913 (.09) .921 (.09) .902 (.09) .873 (.11)

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global .804 (.11) .773 (.11) .727 (.12) .574 (.15) .774 (.11) .703 (.14) .636 (.15) .517 (.14) .487 (.14) .314 (.13)
local .628 (.15) .620 (.14) .627 (.14) .607 (.14) .620 (.14) .627 (.14) .607 (.14) .622 (.14) .621 (.14) .620 (.14)
fair (TERM, t=1) .809 (.11) .636 (.15) .562 (.13) .478 (.12) .440 (.15) .336 (.12) .363 (.12) .353 (.12) .316 (.12) .299 (.11)
Ditto .834 (.09) .802 (.10) .762 (.11) .672 (.13) .801 (.09) .700 (.15) .675 (.14) .685 (.15) .650 (.14) .613 (.13)

G.2 PERSONALIZATION

We additionally explore the performance of other personalized FL methods in terms of accuracy and
fairness, on both clean and adversarial cases. In particular, we consider objectives that (i) regularize
with the average (L2SGD (Hanzely & Richtárik, 2020)), (ii) encourage closeness to the global model
in terms of some specific function behavior (EWC (Kirkpatrick et al., 2017; Yu et al., 2020) and
Symmetrized KL (SKL)), (iii) interpolate between local and global models (APFL (Deng et al., 2021)
and mapper (Mansour et al., 2020)), and (iv) have been motivated by meta-learning (Per-FedAvg
(HF) (Fallah et al., 2020)). We provide a detailed description in Appendix F.

We compare Ditto with the above alternatives, using the same learning rate tuned on FedAvg on
clean data for all methods except Per-FedAvg, which requires additional tuning to prevent divergence.
For finetuning methods (EWC and SKL), we finetune on each local device for 50 epochs starting from
the converged global model. We report results of baseline methods using their best hyperparameters.
Despite Ditto’s simplicity, in Table 3 below, we see that Ditto achieves similar or superier test
accuracy with slightly lower standard deviation compared with these recent personalization methods.
Further understanding the robustness/fairness benefits of other personalized approaches would be an
interesting direction of future work.

G.3 COMPARING TWO SOLVERS

As mentioned in Section 3.1, another way to solve Ditto is to finetune on minvk hk(vk;w∗) for
each k ∈ [K] after obtaining w∗. In non-convex cases, however, starting from a corrupted w∗ may
result in inferior performance compared with Algorithm 1. Intuitively, under training-time attacks,
the global model may start from a random one, get optimized, and gradually become corrupted as
training proceeds (Li et al., 2020b). In these cases, feeding in early global information (i.e., before
the global model converges to w∗) may be helpful under strong attacks.

We examine the performance of two solvers under the model replacement attack (A3) with 20%
adversaries. In realistic federated networks, it may be challenging to determine how many iterations
to finetune for, particularly over a heterogeneous network of devices. To obtain the best performance
of finetuning, we solve minvk hk(vk;w∗) on each device by running different iterations of mini-batch
SGD and pick the best one. As shown in Figure 7, the finetuning solver improves the performance
compared with learning a global model, while Ditto combined with joint optimization performs
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Table 3: Ditto is competitive with or outperforms other recent personalization methods. We report
the average (standard deviation) of test accuracies across all devices to capture performance and
fairness (Definition 2), respectively.

Clean 50% Adversaries (A1)

Methods FEMNIST CelebA FEMNIST CelebA
global .804 (.11) .911 (.19) .727 (.12) .538 (.28)
local .628 (.15) .692 (.27) .627 (.14) .682 (.27)
plain finetuning .815 (.09) .912 (.18) .734 (.12) .721 (.28)
L2SGD .817 (.10) .899 (.18) .732 (.15) .725 (.25)
EWC .810 (.11) .910 (.18) .756 (.12) .642 (.26)
SKL .820 (.10) .915 (.16) .752 (.12) .708 (.27)
Per-FedAvg (HF) .827 (.09) .907 (.17) .604 (.14) .756 (.26)
mapper .792 (.12) .773 (.25) .726 (.13) .704 (.27)
APFL .811 (.11) .911 (.17) .750 (.11) .710 (.27)
Ditto .836 (.10) .914 (.18) .767 (.10) .721 (.27)

the best. One can also perform finetuning after early stopping; however, it is essentially solving a
different objective and it is difficult to do so in practice based on the training or validation data alone,
as shown in Figure 9.
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Figure 7: Ditto with joint optimization (Algorithm 1) outperforms the alternative local finetuning solver
under the strong model replacement attack.
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Figure 8: ‘Ditto, joint’ achieves high test
accuracy on benign devices. The perfor-
mance can also be good if we first early stop
at some specific points and then finetune.
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Figure 9: Finetuning is not very practical as it is dif-
ficult to determine when to stop training the global
model by looking at the training loss (left) or valida-
tion accuracy (right) on all devices (without knowing
which are benign).

G.4 TUNING λ

We assume that the server does not have knowledge of which devices are benign vs. malicious, and
we have each device locally select and apply a best λ from a candidate set of three values based on
their validation data. For benign devices, this means they will pick a λ based on their clean validation
signal. For malicious devices, how they perform personalization (i.e., selecting λ) does not affect the
corrupted global model updates they send, which are independent of λ. We further assume the devices
have some knowledge of how ‘strong’ the attack is. We define strong attacks as (i) all of model
replacement attacks (A3) where the magnitude of the model updates from malicious devices can scale
by > 10×, and (ii) other attacks where more than half of the devices are corrupted. In particular, for
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devices with very few validation samples (less than 4), we use a fixed small λ (λ=0.1) for strong
attacks, and use a fixed relatively large λ (λ=1) for all other attacks. For devices with more than 5
validation data points, we let each select λ from {0.05, 0.1, 0.2} for strong attacks, and select λ from
{0.1, 1, 2} for all other attacks. For the StackOverflow dataset, we tune λ from {0.01, 0.05, 0.1} for
strong attacks, and {0.05, 0.1, 0.3} for all other attacks. We directly evaluate our hyperparameter
tuning strategy in Table 4 below—showing that this dynamic tuning heuristic works well relative to
an ideal, but more unrealistic strategy that picks the best λ based on knowledge of which devices are
benign vs. malicious (i.e., by only using the validation data of the benign devices).

Table 4: Results (test accuracy and standard deviation) of using dynamic λ’s. ‘Best λ’ refers to the
results of selecting the best (fixed) λ based on average validation performance on benign devices
(assuming the server knows which devices are malicious).

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

best λ 0.836 (.10) 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.650 (.14)
dynamic λ’s 0.834 (.09) 0.802 (.10) 0.762 (.11) 0.672 (.13) 0.801 (.09) 0.700 (.15) 0.675 (.14) 0.685 (.15) 0.650 (.14) 0.613 (.13)
Fashion A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.946 (.06) 0.944 (.08) 0.935 (.07) 0.925 (.07) 0.943 (.08) 0.930 (.07) 0.912 (.08) 0.914 (.09) 0.903 (.09) 0.873 (.09)
dynamic λ’s 0.943 (.06) 0.944 (.07) 0.937 (.07) 0.907 (.10) 0.938 (.07) 0.930 (.08) 0.913 (.09) 0.921 (.09) 0.902 (.09) 0.872 (.11)
CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

best λ 0.914 (.18) 0.828 (.22) 0.721 (.27) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0 708 (.29) 0.699 (.28) 0.694 (.27) 0.689 (.28)
dynamic λ’s 0.911 (.16) 0.820 (.26) 0.714 (.28) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0.706 (.28) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Vehicle A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.882 (.05) 0.862 (.05) 0.841 (.09) 0.851 (.06) 0.884 (.05) 0.872 (.06) 0.879 (.04) 0.872 (.06) 0.829 (.08) 0.827 (.08)
dynamic λ’s 0.872 (.05) 0.857 (.06) 0.827 (.08) 0.834 (.05) 0.872 (.06) 0.867 (.07) 0.848 (.04) 0.839 (.08) 0.824 (.08) 0.822 (.09)
StackOverflow A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

best λ 0.315 (.16) 0.325 (.16) 0.315 (.17) 0.313 (.15) 0.314 (.16) 0.350 (.16) 0.312 (.14) 0.316 (.17) 0.321 (.17) 0.327 (.17)
dynamic λ’s 0.317 (.17) 0.323 (.18) 0.314 (.16) 0.359 (.16) 0.326 (.17) 0.317 (.17) 0.301 (.17) 0.318 (.17) 0.319 (.17) 0.311 (.17)

G.5 DITTO AUGMENTED WITH ROBUST BASELINES

Ditto allows the flexibility of learning robust w∗ leveraging any previous robust aggregation
techniques, which could further improve the performance of personalized models. For instance, in
the aggregation step at the server side (Line 7 in Algorithm 1), instead of simply averaging the global
model updates as in FedAvg, we can aggregate them via multi-Krum, or after gradient clipping. As
is shown in Table 5 below, Ditto combined with clipping or multi-Krum yields improvements
compared with vanilla Ditto.

Table 5: Ditto augmented with robust baselines (full results).

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.773 (.11) 0.727 (.12) 0.574 (.15) 0.774 (.11) 0.703 (.14) 0.636 (.15) 0.517 (.14) 0.487 (.14) 0.364 (.13)
clipping 0.791 (.11) 0.736 (.11) 0.408 (.14) 0.791 (.11) 0.736 (.13) 0.656 (.13) 0.795 (.11) 0.060 (.05) 0.061 (.05)
Ditto 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.650 (.14)
Ditto + clipping 0.810 (.11) 0.762 (.11) 0.645 (.13) 0.808 (.11) 0.757 (.11) 0.684 (.13) 0.813 (.13) 0.707 (.15) 0.672 (.14)
CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.810 (.22) 0.535 (.26) 0.228 (.21) 0.869 (.22) 0.823 (.23) 0.656 (.26) 0.451 (.27) 0.460 (.29) 0.515 (.31)
multi-Krum 0.882 (.22) 0.564 (.26) 0.107 (.19) 0.887 (.21) 0.891 (.20) 0.617 (.30) 0.512 (.27) 0.529 (.27) 0.430 (.26)
Ditto 0.828 (.22) 0.721 (.27) 0.724 (.28) 0.872 (.22) 0.826 (.26) 0.708 (.29) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Ditto + multi-Krum 0.875 (.20) 0.722 (.26) 0.733 (.27) 0.903 (.20) 0.902 (.21) 0.885 (.23) 0.713 (.28) 0.709 (.28) 0.713 (.28)
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G.6 DITTO COMPLETE RESULTS

In Section 4, we present partial results on three strong attacks on one dataset. Here, we provide full
results showing the robustness and fairness of Ditto on all attacks and all datasets compared with
all defense baselines. We randomly split local data on each device into 72% train, 8% validation, and
20% test sets, and report all results on test data. We use a learning rate of 0.01 for StackOverflow,
0.05 for Fashion MNIST and 0.1 for all other datasets; and batch size 16 for CelebA and Fashion
MNIST, 32 for FEMNIST and Vehicle, and 100 for StackOverflow. For every dataset, we first run
FedAvg on clean data to determine the number of communication rounds. Then we run the same
number of rounds for all attacks on that dataset.

For our robust baselines, ‘median’ means coordinate-wise median. For Krum, multi-Krum, k-norm,
and k-loss, we assume the server knows the expected number of malicious devices when aggregation.
In other words, for k-norm, we filter out the updates with the k largest norms where k is set to the
expected number of malicious devices. Similarly, for k-loss, we only use the model update with
the k+1-th largest training loss. For gradient clipping, we set the threshold to be the median of the
gradient norms coming from all selected devices at each round. FedMGDA+ has an additional ε
hyperparameter which we select from {0, 0.1, 0.5, 1} based on the validation performance on benign
devices. For the finetuning (only on neural network models) baseline, we run 50 epochs of mini-batch
SGD on each device on the local objective Fk starting from w∗. We see that Ditto can achieve
better fairness and robustness in most cases. In particular, on average of all datasets and all attack
scenarios, Ditto (with dynamic λ’s) achieves 6% absolute accuracy improvement compared with
the strongest robust baseline. In terms of fairness, Ditto is able to reduce the variance of test
accuracy by 10% while improving the average accuracy by 5% relative to state-of-the-art methods
for fair FL (without attacks).

Table 6: Full results (average and standard deviation of test accuracy across all devices) on Vehicle.

Vehicle A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global 0.866 (.16) 0.847 (.08) 0.643 (.10) 0.260 (.27) 0.866 (.18) 0.840 (.21) 0.762 (.27) 0.854 (.17) 0.606 (.08) 0.350 (.19)
local 0.836 (.07) 0.835 (.08) 0.840 (.09) 0.857 (.09) 0.835 (.08) 0.840 (.09) 0.857 (.09) 0.840 (.07) 0.835 (.08) 0.840 (.09)
fair 0.870 (.08) 0.721 (.06) 0.572 (.08) 0.404 (.13) 0.746 (.12) 0.704 (.15) 0.706 (.20) 0.775 (.13) 0.628 (.25) 0.448 (.11)
median 0.863 (.16) 0.861 (.18) 0.676 (.11) 0.229 (.31) 0.864 (.18) 0.838 (.21) 0.774 (.28) 0.867 (.17) 0.797 (.07) 0.319 (.17)
Krum 0.852 (.17) 0.853 (.19) 0.830 (.22) 0.221 (.32) 0.851 (.19) 0.828 (.22) 0.780 (.31) 0.867 (.17) 0.866 (.18) 0.588 (.14)
multi-Krum 0.866 (.16) 0.867 (.18) 0.839 (.20) 0.220 (.32) 0.867 (.18) 0.839 (.22) 0.770 (.31) 0.868 (.17) 0.836 (.08) 0.406 (.15)
clipping 0.864 (.16) 0.865 (.17) 0.678 (.34) 0.234 (.30) 0.865 (.18) 0.839 (.22) 0.764 (.27) 0.868 (.17) 0.789 (.07) 0.315 (.17)
k-norm 0.866 (.16) 0.867 (.17) 0.838 (.21) 0.222 (.32) 0.867 (.18) 0.839 (.22) 0.778 (.31) 0.867 (.17) 0.844 (.09) 0.458 (.16)
k-loss 0.850 (.05) 0.755 (.03) 0.732 (.09) 0.217 (.31) 0.852 (.06) 0.840 (.07) 0.825 (.09) 0.866 (.17) 0.692 (.08) 0.328 (.16)
FedMGDA+ 0.860 (.16) 0.835 (.09) 0.674 (.14) 0.270 (.26) 0.860 (.18) 0.843 (.22) 0.794 (.26) 0.836 (.17) 0.757 (.07) 0.676 (.17)

Ditto, λ=0.1 0.845 (.07) 0.841 (.08) 0.841 (.09) 0.851 (.06) 0.844 (.07) 0.848 (.08) 0.866 (.05) 0.838 (.07) 0.829 (.08) 0.827 (.08)
Ditto, λ=1 0.875 (.05) 0.859 (.06) 0.821 (.07) 0.776 (.08) 0.875 (.06) 0.870 (.07) 0.879 (.04) 0.860 (.07) 0.813 (.07) 0.757 (.08)
Ditto, λ=2 0.882 (.05) 0.862 (.05) 0.800 (.07) 0.709 (.12) 0.884 (.05) 0.872 (.06) 0.869 (.04) 0.872 (.06) 0.791 (.06) 0.690 (.09)

Table 7: Full results (average and standard deviation of test accuracy across all devices) on FEMNIST.

FEMNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.804 (.11) 0.773 (.11) 0.727 (.12) 0.574 (.15) 0.774 (.11) 0.703 (.14) 0.636 (.15) 0.517 (.14) 0.487 (.14) 0.364 (.13)
local 0.628 (.15) 0.620 (.14) 0.627 (.14) 0.607 (.13) 0.620 (.14) 0.627 (.14) 0.607 (.13) 0.622 (.14) 0.621 (.14) 0.620 (.14)
fair 0.809 (.11) 0.636 (.15) 0.562 (.13) 0.478 (.12) 0.440 (.15) 0.336 (.12) 0.363 (.12) 0.353 (.12) 0.316 (.12) 0.299 (.11)
median 0.733 (.14) 0.627 (.15) 0.576 (.15) 0.060 (.04) 0.673 (.14) 0.645 (.14) 0.564 (.15) 0.628 (.14) 0.573 (.15) 0.577 (.16)
Krum 0.717 (.16) 0.059 (.05) 0.096 (.07) 0.091 (.07) 0.604 (.14) 0.062 (.25) 0.024 (.02) 0.699 (.15) 0.719 (.13) 0.648 (.14)
multi-Krum 0.804 (.11) 0.790 (.11) 0.759 (.11) 0.115 (.07) 0.789 (.11) 0.762 (.11) 0.014 (.02) 0.529 (.14) 0.664 (.15) 0.561 (.14)
clipping 0.805 (.11) 0.791 (.11) 0.736 (.11) 0.408 (.14) 0.791 (.11) 0.736 (.13) 0.656 (.13) 0.795 (.11) 0.060 (.05) 0.061 (.05)
k-norm 0.806 (.11) 0.785 (.11) 0.760 (.12) 0.060 (.05) 0.788 (.10) 0.765 (.11) 0.011 (.02) 0.060 (.04) 0.647 (.15) 0.562 (.15)
k-loss 0.762 (.11) 0.606 (.13) 0.599 (.13) 0.596 (.13) 0.432 (.12) 0.508 (.13) 0.572 (.14) 0.060 (.04) 0.009 (.02) 0.006 (.01)
FedMGDA+ 0.803 (.12) 0.794 (.12) 0.730 (.12) 0.057 (.04) 0.793 (.12) 0.753 (.12) 0.671 (.14) 0.798 (.11) 0.794 (.12) 0.791 (.11)
finetuning 0.815 (.09) 0.778 (.11) 0.734 (.12) 0.671 (.13) 0.764 (.11) 0.695 (.18) 0.646 (.14) 0.688 (.13) 0.671 (.14) 0.655 (.13)

Ditto, λ=0.01 0.800 (.15) 0.709 (.15) 0.683 (.17) 0.642 (.13) 0.701 (.14) 0.684 (.14) 0.645 (.14) 0.650 (.14) 0.628 (.14) 0.650 (.14)
Ditto, λ=0.1 0.827 (.10) 0.794 (.11) 0.755 (.13) 0.666 (.14) 0.786 (.13) 0.743 (.14) 0.674 (.14) 0.691 (.15) 0.664 (.14) 0.640 (.14)
Ditto, λ=1 0.836 (.10) 0.803 (.10) 0.767 (.10) 0.672 (.14) 0.792 (.11) 0.691 (.17) 0.575 (.17) 0.642 (.12) 0.595 (.14) 0.554 (.15)
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Table 8: Full results (average and standard deviation of test accuracy across all devices) on Fashion
MNIST.

Fashion MNIST A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 20% 50%

global 0.911 (.08) 0.897 (.08) 0.855 (.10) 0.753 (.13) 0.900 (.08) 0.882 (.09) 0.857 (.10) 0.753 (.10) 0.551 (.13) 0.275 (.12)
local 0.876 (.10) 0.874 (.10) 0.876 (.11) 0.879 (.10) 0.874 (.10) 0.876 (.11) 0.879 (.10) 0.877 (.10) 0.874 (.10) 0.876 (.11)
fair 0.909 (.07) 0.751 (.12) 0.637 (.13) 0.547 (.11) 0.731 (.13) 0.637 (.14) 0.635 (.14) 0.653 (.13) 0.601 (.12) 0.131 (.16)
median 0.884 (.09) 0.853 (.10) 0.818 (.12) 0.606 (.17) 0.885 (.09) 0.883 (.09) 0.864 (.10) 0.856 (.09) 0.829 (.11) 0.725 (.15)
Krum 0.838 (.13) 0.864 (.11) 0.818 (.13) 0.768 (.15) 0.847 (.12) 0.870 (.11) 0.805 (.13) 0.868 (.11) 0.866 (.11) 0.640 (.18)
multi-Krum 0.911 (.08) 0.907 (.08) 0.889 (.10) 0.793 (.12) 0.849 (.10) 0.827 (.12) 0.095 (.12) 0.804 (.11) 0.860 (.09) 0.823 (.13)
clipping 0.913 (.07) 0.905 (.08) 0.875 (.10) 0.753 (.12) 0.904 (.08) 0.886 (.09) 0.856 (.11) 0.901 (.08) 0.844 (.11) 0.477 (.13)
k-norm 0.911 (.08) 0.908 (.08) 0.888 (.10) 0.118 (.08) 0.906 (.08) 0.893 (.09) 0.096 (.07) 0.765 (.14) 0.854 (.10) 0.828 (.12)
k-loss 0.898 (.08) 0.856 (.09) 0.861 (.10) 0.851 (.31) 0.876 (.09) 0.866 (.11) 0.870 (.10) 0.538 (.14) 0.257 (.13) 0.092 (.13)
FedMGDA+ 0.915 (.08) 0.907 (.08) 0.874 (.10) 0.753 (.13) 0.911 (.08) 0.900 (.09) 0.873 (.10) 0.914 (.08) 0.904 (.08) 0.869 (.10)
finetuning 0.945 (.06) 0.946 (.07) 0.935 (.07) 0.922 (.08) 0.945 (.07) 0.930 (.08) 0.923 (.08) 0.915 (.08) 0.871 (.11) 0.764 (.15)

Ditto, λ=0.1 0.929 (.09) 0.920 (.09) 0.909 (.10) 0.897 (.10) 0.921 (.09) 0.914 (.09) 0.905 (.08) 0.914 (.09) 0.903 (.09) 0.873 (.09)
Ditto, λ=1 0.946 (.06) 0.944 (.08) 0.935 (.07) 0.925 (.07) 0.943 (.08) 0.930 (.07) 0.912 (.08) 0.887 (.09) 0.831 (.10) 0.740 (.12)
Ditto, λ=2 0.945 (.06) 0.942 (.06) 0.935 (.07) 0.917 (.07) 0.936 (.07) 0.923 (.08) 0.906 (.08) 0.871 (.09) 0.785 (.11) 0.606 (.14)

Table 9: Full results (average and standard deviation of test accuracy across all devices) on FEMNIST
(skewed).

FEMNIST (skewed) A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.720 (.24) 0.657 (.28) 0.585 (.30) 0.435 (.23) 0.688 (.26) 0.631 (.24) 0.589 (.26) 0.023 (.11) 0.038 (.18) 0.039 (.18)
local 0.915 (.18) 0.903 (.21) 0.937 (.18) 0.902 (.19) 0.903 (.21) 0.937 (.18) 0.902 (.19) 0.881 (.21) 0.912 (.18) 0.903 (.21)
fair 0.716 (.22) 0.644 (.29) 0.545 (.29) 0.421 (.22) 0.348 (.22) 0.321 (.16) 0.242 (.15) 0.010 (.11) 0.042 (.10) 0.037 (.17)
median 0.079 (.12) 0.086 (.12) 0.031 (.06) 0.044 (.08) 0.075 (.12) 0.109 (.13) 0.323 (.25) 0.060 (.10) 0.020 (.09) 0.033 (.07)
Krum 0.457 (.37) 0.360 (.35) 0.061 (.22) 0.127 (.27) 0.424 (.38) 0.051 (.08) 0.147 (.22) 0.434 (.36) 0.472 (.36) 0.484 (.35)
multi-Krum 0.725 (.25) 0.699 (.29) 0.061 (.22) 0.271 (.21) 0.712 (.29) 0.705 (.30) 0.584 (.28) 0.633 (.30) 0.556 (.30) 0.526 (.28)
clipping 0.727 (.28) 0.678 (.28) 0.604 (.34) 0.401 (.26) 0.726 (.26) 0.711 (.26) 0.645 (.24) 0.699 (.29) 0.674 (.28) 0.640 (.28)
k-norm 0.716 (.28) 0.691 (.30) 0.396 (.36) 0.005 (.08) 0.724 (.26) 0.721 (.29) 0.692 (.35) 0.612 (.29) 0.599 (.30) 0.565 (.28)
k-loss 0.587 (.21) 0.526 (.29) 0.419 (.36) 0.127 (.27) 0.555 (.23) 0.550 (.26) 0.093 (.16) 0.003 (.08) 0.009 (.07) 0.006 (.05)
finetuning 0.948 (.11) 0.942 (.13) 0.959 (.10) 0.946 (.10) 0.949 (.16) 0.918 (.21) 0.621 (.11) 0.788 (.25) 0.740 (.27) 0.751 (.26)

Ditto, λ=0.01 0.947 (.15) 0.945 (.18) 0.955 (.20) 0.946 (.13) 0.942 (.18) 0.949 (.15) 0.944 (.14) 0.902 (.20) 0.895 (.23) 0.888 (.20)
Ditto, λ=0.1 0.948 (.10) 0.945 (.14) 0.959 (.12) 0.936 (.09) 0.945 (.13) 0.948 (.10) 0.888 (.18) 0.936 (.16) 0.827 (.23) 0.812 (.24)
Ditto, λ=1 0.902 (.15) 0.899 (.15) 0.907 (.15) 0.861 (.14) 0.899 (.18) 0.818 (.22) 0.423 (.41) 0.880 (.15) 0.730 (.28) 0.736 (.28)

Table 10: Full results (average and standard deviation of test accuracy across all devices) on CelebA.

CelebA A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.911 (.19) 0.810 (.22) 0.535 (.26) 0.228 (.21) 0.869 (.22) 0.823 (.23) 0.656 (.26) 0.451 (.27) 0.460 (.29) 0.515 (.31)
local 0.692 (.27) 0.690 (.27) 0.682 (.27) 0.681 (.26) 0.690 (.27) 0.682 (.27) 0.681 (.26) 0.692 (.27) 0.693 (.27) 0.690 (.27)
fair 0.905 (.17) 0.724 (.27) 0.509 (.27) 0.195 (.21) 0.790 (.26) 0.646 (.27) 0.646 (.27) 0.442 (.27) 0.426 (.28) 0.453 (.28)
median 0.910 (.18) 0.872 (.22) 0.494 (.28) 0.126 (.18) 0.901 (.20) 0.864 (.20) 0.617 (.30) 0.885 (.20) 0.891 (.19) 0.870 (.21)
Krum 0.775 (.25) 0.810 (.25) 0.641 (.25) 0.377 (.10) 0.790 (.25) 0.699 (.25) 0.584 (.27) 0.780 (.25) 0.728 (.25) 0.685 (.30)
multi-Krum 0.911 (.19) 0.882 (.22) 0.564 (.26) 0.107 (.19) 0.887 (.21) 0.891 (.20) 0.617 (.30) 0.512 (.27) 0.529 (.27) 0.430 (.26)
clipping 0.909 (.18) 0.866 (.19) 0.485 (.29) 0.126 (.20) 0.897 (.20) 0.842 (.21) 0.665 (.26) 0.901 (.20) 0.883 (.21) 0.853 (.23)
k-norm 0.908 (.18) 0.870 (.22) 0.537 (.28) 0.105 (.17) 0.874 (.23) 0.909 (.18) 0.664 (.25) 0.506 (.28) 0.577 (.27) 0.449 (.28)
k-loss 0.873 (.19) 0.584 (.28) 0.550 (.31) 0.169 (.21) 0.595 (.28) 0.654 (.28) 0.683 (.26) 0.543 (.33) 0.458 (.33) 0.455 (.34)
FedMGDA+ 0.909 (.19) 0.853 (.21) 0.508 (.28) 0.473 (.34) 0.907 (.19) 0.889 (.21) 0.782 (.26) 0.865 (.23) 0.805 (.26) 0.847 (.21)
finetuning 0.912 (.18) 0.814 (.24) 0.721 (.28) 0.691 (.29) 0.850 (.24) 0.800 (.25) 0.747 (.24) 0.665 (.28) 0.668 (.27) 0.673 (.28)

Ditto, λ=0.1 0.884 (.24) 0.716 (.27) 0.721 (.27) 0.724 (.28) 0.727 (.26) 0.708 (.28) 0.706 (.28) 0.699 (.28) 0.694 (.27) 0.689 (.28)
Ditto, λ=1 0.911 (.16) 0.820 (.26) 0.714 (.28) 0.675 (.29) 0.872 (.22) 0.826 (.26) 0.708 (.29) 0.629 (.29) 0.667 (.28) 0.685 (.28)
Ditto, λ=2 0.914 (.18) 0.828 (.22) 0.698 (.27) 0.654 (.28) 0.862 (.21) 0.791 (.26) 0.623 (.31) 0.585 (.29) 0.647 (.27) 0.655 (.29)
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Table 11: Full results on (average and standard deviation of test accuracy across all devices) Stack-
Overflow.

StackOverflow A1 (ratio of adversaries) A2 (ratio of adversaries) A3 (ratio of adversaries)

Methods clean 20% 50% 80% 20% 50% 80% 10% 15% 20%

global 0.155 (.13) 0.153 (.13) 0.156 (.16) 0.169 (.18) 0.147 (.12) 0.009 (.03) 0.013 (.01) 0.000 (.00) 0.000 (.00) 0.000 (.00)
local 0.311 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15) 0.311 (.15) 0.313 (.15) 0.319 (.15)
fair 0.154 (.13) 0.155 (.14) 0.153 (.13) 0.141 (.10) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.148 (.12) 0.152 (.13) 0.167 (.11)
median 0.002 (.00) 0.001 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.001 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00) 0.000 (.00)
Krum 0.154 (.13) 0.150 (.13) 0.041 (.04) 0.002 (.00) 0.158 (.13) 0.151 (.13) 0.167 (.12) 0.153 (.13) 0.154 (.14) 0.138 (.15)
clipping 0.154 (.13) 0.157 (.13) 0.149 (.13) 0.163 (.17) 0.152 (.13) 0.001 (.01) 0.001 (.01) 0.155 (.12) 0.161 (.14) 0.120 (.16)
k-norm 0.154 (.13) 0.156 (.12) 0.100 (.08) 0.002 (.00) 0.086 (.11) 0.042 (.03) 0.001 (.00) 0.149 (.15) 0.144 (.15) 0.155 (.13)
k-loss 0.155 (.13) 0.160 (.12) 0.164 (.13) 0.129 (.14) 0.136 (.11) 0.145 (.11) 0.156 (.14) 0.148 (.14) 0.159 (.13) 0.156 (.13)
FedMGDA+ 0.155 (.12) 0.154 (.13) 0.152 (.13) 0.165 (.13) 0.147 (.13) 0.160 (.14) 0.101 (.09) 0.155 (.13) 0.158 (.12) 0.154 (.13)

Ditto, λ=0.05 0.315 (.16) 0.325 (.16) 0.315 (.17) 0.313 (.15) 0.314 (.16) 0.350 (.16) 0.312 (.14) 0.316 (.17) 0.321 (.17) 0.327 (.17)
Ditto, λ=0.1 0.309 (.17) 0.318 (.17) 0.315 (.17) 0.293 (.13) 0.309 (.17) 0.316 (.16) 0.307 (.14) 0.319 (.17) 0.302 (.17) 0.305 (.17)
Ditto, λ=0.3 0.255 (.18) 0.298 (.18) 0.288 (.17) 0.304 (.16) 0.283 (.17) 0.233 (.18) 0.321 (.20) 0.252 (.17) 0.261 (.19) 0.269 (.17)
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H CONCLUSION AND FUTURE WORK

We propose Ditto, a simple MTL framework, to address the competing constraints of accuracy,
fairness, and robustness in federated learning. Ditto can be thought of as a lightweight personal-
ization add-on for any global federated objective, which maintains the privacy and communication
efficiency of the global solver. We theoretically analyze the ability of Ditto to mitigate the tension
between fairness and robustness on a class of linear problems. Our empirical results demonstrate
that Ditto can result in both more robust and fairer models compared with strong baselines across
a diverse set of attacks. Our work suggests several interesting directions of future study, such as
exploring the applicability of Ditto to other attacks such as backdoor attacks (e.g., Sun et al., 2019);
understanding the fairness/robustness properties of other personalized methods; and considering
additional constraints, such as privacy.
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