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ABSTRACT

Machine learning algorithms are vulnerable to poisoning attacks, where a fraction
of the training data is manipulated to degrade the algorithms’ performance. We
show that current approaches, which typically assume that regularization hyper-
parameters remain constant, lead to an overly pessimistic view of the algorithms’
robustness and of the impact of regularization. We propose a novel optimal at-
tack formulation that considers the effect of the attack on the hyperparameters,
modelling the attack as a minimax bilevel optimization problem. This allows to
formulate optimal attacks, select hyperparameters and evaluate robustness under
worst case conditions. We apply this formulation to logistic regression using L2

regularization, empirically show the limitations of previous strategies and evidence
the benefits of using L2 regularization to dampen the effect of poisoning attacks.

1 INTRODUCTION

In many applications, Machine Learning (ML) systems rely for their training on data collected from
untrusted sources, such as humans, sensors, or IoT devices that can be easily compromised. Spoofed
data from such sources can be used to poison the learning algorithms and maximize their error
in targeted or indiscriminate ways. The vulnerability of ML algorithms to poisoning attacks has
been amply studied (Biggio et al., 2012; Mei & Zhu, 2015; Xiao et al., 2015; Koh & Liang, 2017;
Muñoz-González et al., 2017; Steinhardt et al., 2017; Koh et al., 2018; Paudice et al., 2018; Shafahi
et al., 2018; Zhang et al., 2018; Diakonikolas et al., 2019; Muñoz-González et al., 2019b; Zhu et al.,
2019; Huang et al., 2020; Geiping et al., 2021; Levine & Feizi, 2021), as well as how adversaries
can manipulate a fraction of the training data to subvert learning, decrease its overall performance or
produce specific errors (Barreno et al., 2010; Huang et al., 2011; Muñoz-González et al., 2019a).

Several systematic poisoning attacks have been proposed to analyze, under worst-case conditions,
different families of ML algorithms such as Support Vector Machines (SVMs) (Biggio et al., 2012),
other linear classifiers (Xiao et al., 2015; Mei & Zhu, 2015; Koh et al., 2018), and neural networks
(Koh & Liang, 2017; Muñoz-González et al., 2017; Huang et al., 2020). These attacks are typically
formulated as a bilevel optimization problem where the attacker aims to maximize some malicious
objective function (e.g. to maximize the error) by manipulating a fraction of the training data. At
the same time, the defender aims to optimize a different objective function to learn the model’s
parameters, typically evaluated on the poisoned training set.

Some of these attacks target algorithms that have hyperparameters, but consider them constant
regardless of the fraction of poisoning points. We show that this can provide a misleading analysis of
the robustness of the algorithms, as the hyperparameters’ values can change depending on the type
and strength of the attack. We propose a novel and more general poisoning attack formulation to
test ML algorithms that use hyperparameters in worst-case scenarios. In such cases, the attacker is
aware of the dataset used, aims to maximize the overall error and the attack can be modelled as a
bilevel optimization problem where the outer problem is a minimax that includes both the learning of
the poisoning points and the hyperparameters and the inner problem involves learning the model’s
parameters. We have applied our formulation to test the robustness of Logistic Regression (LR)
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classifiers that use L2 regularization. We have used hypergradient (i.e. the gradient in the outer
problem (Maclaurin et al., 2015; Franceschi et al., 2017; 2018; Grazzi et al., 2020)) descent/ascent
to solve the minimax bilevel optimization problem. Our experiments show that the results reported
in (Xiao et al., 2015) provide an overly pessimistic view of the effect of regularization. When used
with the right regularization hyperparameter, L2 regularization helps partially mitigate the effect of
poisoning attacks. We show that the value of the regularization hyperparameter (if optimized) can
increase with the attack strength, i.e., the algorithm tries to compensate the negative effect of the
attack by increasing the strength of the regularization term. We start by setting the problem, study the
effect of regularization in a small illustrative example and then present our findings.

2 GENERAL OPTIMAL POISONING ATTACKS

In a classification task, given the input space X ⊆ Rm and the label space Y , the learner aims
to estimate the mapping f : X → Y . Given a training set Dtr = {(xtri , ytri)}ntr

i=1 drawn from
the underlying distribution p(X ,Y), we can estimate f with a model M trained by minimizing
a loss function L(Dtr,Λ,w) w.r.t. its parameters, w ∈ Rd, given the hyperparameters Λ ∈ Rc.
Similarly to previous work (Foo et al., 2008; Xiao et al., 2015), we assume the learner has access
to a small validation dataset Dval = {(xvalj , yvalj )}nval

j=1 with nval trusted points, representative of
the underlying distribution. This validation set is held out for hyperparameter optimization, i.e.
minΛ∈Φ(Λ) L(Dval,w?), where w? are the parameters learned and Φ(·) is the feasible domain.

In data poisoning attacks the adversary injects a set of np malicious data points,Dp = {(xpk , ypk)}np

k=1,
in the training set to maximize an objective function A. We assume the attacker can arbitrarily
manipulate all the features and the label of the injected points, provided that they remain within the
feasible domain of valid data points. We further assume the attacker knows everything about the
training data, the feature representation, the loss function, and the ML model. This allows us to
analyze worst-case scenario attacks of different strength.

In this work we focus on indiscriminate attacks, where the attacker aims to increase the overall
classification error. Therefore, the attacker’s objective function A coincides with the defender’s loss
function L evaluated on Dval at the end of training, i.e. L(Dval,w

?). Hence, the attacker aims to
maximize the loss evaluated on the defender’s validation set, which can be formulated as a bilevel
optimization problem where the outer objective is the attacker’s objective, which depends on the
optimal parameters obtained from the inner (training) problem. Previous studies have neglected
the effect of the regularization hyperparameter in the attacker’s problem (Biggio et al., 2012; Xiao
et al., 2015; Mei & Zhu, 2015; Muñoz-González et al., 2017; Koh et al., 2018) and thus incompletely
model the outer problem as a maximization w.r.t. the poisoning points. Taking hyperparameters into
account, we propose to formulate the outer objective as a minimax problem:

min
Λ∈Φ(Λ)

max
Dp∈Φ(Dp)

L(Dval,w?)

s.t. w? ∈ arg min
w∈W

L (D′tr,Λ,w) ,
(1)

where D′tr = Dtr ∪ Dp is the poisoned dataset. In the more general formulation we propose in (1) it is
clear that the poisoning points in D′tr have an effect not only on the classifier’s parameters, but also
on its hyperparameters. This effect has previously been ignored.

Solving the bilevel problem in (1) is strongly NP-Hard (Bard, 2013) and the problem is, in general,
non-convex. However, hypergradient-based approaches can be used to obtain (possibly) sub-optimal
solutions, i.e. finding saddle points for the minimax problem in (1). To compute the hypergradients for
the outer objective, we assume that the loss function, L, is convex and its first and second derivatives
are Lipschitz-continuous. Similarly to (Biggio et al., 2012; Mei & Zhu, 2015; Xiao et al., 2015;
Muñoz-González et al., 2017) we assume that the label of the poisoning points is set a priori, so the
attacker just needs to learn their features Xp.

We use Reverse-Mode Differentiation (RMD) (Domke, 2012; Maclaurin et al., 2015; Franceschi
et al., 2017; Muñoz-González et al., 2017; Franceschi et al., 2018; Grazzi et al., 2020) to estimate
the hypergradients. RMD requires to first train for T epochs. Then, the hypergradients estimate is
computed by reversing the steps followed by the learning algorithm. Compared to grid search, this
approach reduces the computational cost, as the algorithm does not need to be trained completely
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and evaluated for each combination of hyperparameters. After computing the hypergradients, we use
projected hypergradient descent/ascent to update the poisoning points and the hyperparameters:

Xp ← ΠΦ(Dp)

(
Xp + α ∇XpA

)
, Λ ← ΠΦ(Λ) (Λ− β ∇ΛA) , (2)

where α and β are respectively the learning rates and ΠΦ(Dp) and ΠΦ(Λ) are the projection operators
for the features of the poisoning points, Xp, and the hyperparameters, Λ.

3 ILLUSTRATING THE MITIGATING EFFECT OF L2 REGULARIZATION

L2 (or Tikhonov) regularization is often used to increase the stability of ML algorithms (Xu et al.,
2011). Using L2 regularization we add a penalty term to the original loss function, which shrinks
the norm of the model’s parameters, so that L(Dtr,Λ,w) = L(Dtr,w) + eλ

2 ||w||
2
2 , where λ is the

hyperparameter controlling the strength of the regularization term.
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Figure 1: Effect of regularization on a synthetic example with green and
blue classes. The red point is the poisoning point (labelled as green).
The dashed-dotted grey box represent the attacker’s constraints. (Left)
Standard LR with no regularization. (Center) LR withL2 regularization
(λ ≈ 3). (Right) Value of λ learned that minimizes the validation error
as a function of the injected poisoning point.

In Fig. 1 we illustrate the
effect of regularization and
the limitations of the ap-
proach in (Xiao et al., 2015)
using a synthetic exam-
ple with an LR classifier.
Fig. 1(left) shows the ef-
fect of injecting a single
poisoning point that maxi-
mizes the error (measured
on a separate validation set)
against a non-regularized
LR classifier. The dashed-
white line represents the
decision boundary learned
when training on the clean dataset, whereas the red line depicts the decision boundary when training
on the poisoned dataset. We can observe that a single poisoning point can significantly alter the
decision boundary. Fig. 1(center), shows a similar scenario, but training an LR classifier with L2

regularization, setting a large value for λ (λ ≈ 3). Here, we can observe that the effect of the
poisoning is significantly reduced and the decision boundary shifts only slightly. In the background
of Fig. 1(left) and Fig. 1(center) we represent the validation error of the LR trained on a poisoned
dataset as a function of the location of the poisoning point. We can observe that, when there is no
regularization (left) the error can significantly increase when we inject the poisoning point in certain
regions. On the contrary, when regularization is applied (center), the colormap is more uniform, i.e.
the algorithm is quite stable regardless of the position of the poisoning point.

Fig. 1(right) shows how the value of the regularization hyperparameter, λ, changes as a function of
the poisoning point. The colormap in the background represents the value of λ that minimizes the
error on the validation set. We can observe that λ changes significantly depending on the position of
the poisoning point. Thus, λ is much bigger for the regions where the poisoning point can influence
the classifier more (Fig. 1(left)). Thus, when the poisoning attack can have a very negative impact on
the classifier’s performance, the importance of the regularization term, controlled by λ, increases. It
is thus clear that selecting the value of λ appropriately can have a significant impact on the classifier’s
robustness. Furthermore, when testing the robustness of L2-regularized classifiers it is necessary to
consider the interplay between the attack strength and the value of λ.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of the attack strategy in (1) against LR.1 We use three
different binary classification problems: MNIST (‘0’ vs ‘8’) (LeCun et al., 1998), Fashion-MNIST
(FMNIST) (T-shirt vs pullover) (Xiao et al., 2017), and ImageNet (dog vs fish) (Russakovsky et al.,

1The PyTorch implementation of the algorithms used for the experiments is available at
https://github.com/javiccano/regularization-and-poisoning—secml.
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Figure 2: Results for the optimal attack against LR: The first row represents the average test error on
(a) MNIST, (b) FMNIST, and (c) ImageNet. The second row contains the plots for the average λ and
||w||22 for (d) MNIST, (e) FMNIST, and (f) ImageNet.

2015) preprocessed as in (Koh & Liang, 2017) (we use the same Inception-v3 (Szegedy et al., 2016)
features).2 We assume the attacker knows the value of λ for the defender. To evaluate the effect of the
regularization hyperparameter, we craft optimal poisoning attacks, setting the value of λ to different
constant values: a very small regularization term, a very large one, and the value of λ optimized
with 5-fold cross-validation, training the model on the clean dataset (λCLEAN). The latter is similar to
the settings used in (Xiao et al., 2015). We compare these values with the value of λRMD calculated
according to Eq. (1).

In Fig. 2(a)-(c) we can observe that for the small λ and λCLEAN the attacks are very effective and
the test error increases significantly when compared to the algorithm’s performance on the clean
dataset. In contrast, for the largest λ the test error increases only slightly with the increasing fraction
of poisoning points, showing a stable performance regardless of the attack strength. However, in the
absence of an attack, the algorithm clearly underfits and the error is significantly higher compared to
the other models. When the value of λ is learned (λRMD) by solving the problem in (1), the increase
in the test error remains significantly smaller and the algorithm has a similar performance to the
case where the value of λ is large as the fraction of poisoning points increases. In this sense, the
error does not increase further by injecting more poisoning points. In the absence of an attack, the
performance for λRMD is as good as in the case of λCLEAN. These results show that the attack and the
methodology presented in (Xiao et al., 2015) provide an overly pessimistic view on the robustness
of L2 regularization to poisoning attacks and that, by appropriately selecting the value of λ, we can
effectively reduce the impact of poisoning attacks. We can also observe that there is a trade-off
between accuracy and robustness: setting a very large value for λ makes the algorithm more robust,
but the performance on clean data is degraded. Our formulation allows to learn the value of λ most
appropriate for the training set.

In Fig. 2(d)-(f) we show the value of λ learned and the norm of the model’s parameters, ||w||22, as a
function of the fraction of poisoning points injected for the solution of problem (1) with RMD. We
can observe that in all cases, the regularization hyperparameter increases as we increase the fraction
of poisoning points. This confirms that the regularization term tries to compensate the effect of the
malicious samples on the model’s parameters. Thus, as expected, L2 provides a natural mechanism
to stabilize the model in the presence of attacks. For ImageNet, the order of magnitude of λ is higher,
as there are more features in the model. In Fig. 2(d)-(f) we can also observe that, as expected from
the properties of L2 regularization, when λ increases, the norm of the parameters decreases.

5 CONCLUSIONS

We have shown that previous approaches to optimal poisoning attacks, where the model’s hyper-
parameters are considered constant, provide a misleading view of the algorithms’ robustness. We

2The details of the experimental setup and hardware used for the experiments can be found in the Appendix.
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have evidenced that poisoning attacks can have a strong influence on the hyperparameters learned,
and thus, their influence must be considered when assessing algorithm robustness. To achieve this,
we have introduced a novel worst-case poisoning attack strategy to evaluate the robustness of ML
classifiers that contain hyperparameters. The attack is formulated as a minimax bilevel optimization
problem that can be solved with hypergradient-based techniques. We have shown that choosing a
fixed a priori value of λ can be detrimental: if the value is too high it damages accuracy, if the value
is too low it damages robustness. In this sense, in contrast to the results reported in (Xiao et al., 2015)
(which uses a fixed regularization hyperparameter), when facing stronger attacks i.e., more poisoning
points, the regularization hyperparameter can also increase to compensate the instability that the
attacker tries to produce in the algorithm. It is therefore important for organizations training models
from data that may be untrusted, to regularly adjust hyperparameters to adapt the performance and
robustness of the algorithm to current threats.
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A HESSIAN-VECTOR PRODUCTS

Let x ∈ X ⊆ Rm, y ∈ Y ⊆ Rn, v ∈ Rm, and f(x, y) ∈ R. If the second partial derivatives of
f(x, y) are continuous almost everywhere3 in X and Y (mild condition), the Hessian-vector products(
∇2

xf(x, y)
)

v and (∇y∇xf(x, y))
T v can be computed exactly and efficiently by using the following

identities (Pearlmutter, 1994): (
∇2

xf(x, y)
)

v = ∇x
(
vT∇xf(x, y)

)
,

(∇y∇xf(x, y))
T v = ∇y

(
vT∇xf(x, y)

)
.

(3)

The upper and lower expressions scale as O(m) and O(max(m,n)), respectively, both in time and
space. Analogous expressions can be obtained when v ∈ Rn. An elegant aspect of this technique is
that, for machine learning models optimized with gradient-based methods, the equations for exactly
evaluating the Hessian-vector products emulate closely those for standard forward and backward
propagation. Hence, the application of existing automatic differentiation frameworks to compute this
product is typically straightforward (Pearlmutter, 1994; Bishop, 2006).

B REVERSE-MODE DIFFERENTIATION ALGORITHM

As described in (Franceschi et al., 2017), we can think of the training algorithm as a discrete-time
dynamical system, described by a set of states s(t) ∈ Rds , with t = 0, . . . , T , where each state
depends on model’s parameters, the accumulated gradients and/or the velocities. In this paper, we
focus on stochastic gradient descent, so that s(t) = w(t). Then, from a reduced number of training
iterations, T , we can estimate the hypergradients from the values of the parameters collected in the
set of states. Depending on the order to compute the operations we can differentiate two approaches
to estimate the hypergradients: Reverse-Mode (RMD) and Forward-Mode Differentiation (FMD)
(Griewank & Walther, 2008; Franceschi et al., 2017). In the first case, RMD requires first to train
the learning algorithm for T epochs, and then, to compute w(0) to w(T ). Then, the hypergradients
estimate is computed by reversing the steps followed by the learning algorithm from w(T ) down
to w(0). On the other hand, FMD computes the estimate of the hypergradients as the algorithm is
trained, i.e. from w(0) to w(T ) (i.e. the estimates can be computed in parallel with the training
procedure).

To estimate the hypergradients, RMD requires to compute a forward and a backward pass through the
set of states. In contrast, FMD just needs to do the forward computation. However, the scalability of
FMD depends heavily on the number of hyperparameters compared to RMD. Then, for problems
where the number of hyperparameters is large, as is the case for the poisoning attacks we introduced
in the paper, RMD is computationally more efficient to estimate the hypergradients. For this reason,
we used RMD in our experiments.

Here we include the Reverse-Mode Differentiation (RMD) algorithm (Alg. 1) (Domke, 2012;
Maclaurin et al., 2015; Franceschi et al., 2017; Muñoz-González et al., 2017; Franceschi et al., 2018;

3A property that holds almost everywhere holds throughout all space except on a set of measure zero.
Intuitively, a set of measure zero occupies a negligible volume in the measured space (Goodfellow et al., 2016).
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Algorithm 1 Reverse-Mode Differentiation

Input:M, A, L, Dval, D′(τ)
tr , Λ(τ), w(0), T , η

Output: ∇XpA
(
w(T )

)
1: for t = 0 to T − 1 do
2: g← ∇wL

(
w(t)

)
3: w(t+1) ← w(t) − ηg // stochastic gradient descent
4: end for
5: dX(T )

p ← 0
6: dw(T ) ← ∇wA

(
w(T )

)
7: for t = T − 1 down to 0 do
8: dgw ←

(
∇2

wL
(
w(t)

))
dw(t+1) // Hessian-vector product (Sect. A)

9: dgXp
←

(
∇Xp∇wL

(
w(t)

))T
dw(t+1) // Hessian-vector product (Sect. A)

10: dw(t) ← dw(t+1) − ηdgw

11: dX(t)
p ← dX(t+1)

p − ηdgXp

12: end for
13: ∇XpA

(
w(T )

)
← dX(0)

p

Grazzi et al., 2020), which we use to compute the hypergradient estimate at the outer level problem
(both for the features of the poisoning points, Xp, and the hyperparameters, Λ). We make use of a
similar notation to the algorithms presented in (Maclaurin et al., 2015; Muñoz-González et al., 2017).
The resulting algorithm for the case of Λ is analogous.

On the other hand, the choice of the number of epochs for the inner problem, T , depends on the
model and the training dataset. Low values of T could lead to low-quality approximations for the
hypergradient. As T increases, the solution of RMD approaches the exact (true) hypergradient, but at
the risk of overfitting the outer objective in the bilevel optimization problem (Franceschi et al., 2018).

C EXPERIMENTAL SETTINGS

In the following specifications, TDp denotes the number of hyperiterations at the outer problem when
the poisoning points are learned and λ is fixed, Tλ when the training set is clean and λ is learned, and
Tmul when Xp and λ are learned in a coordinate manner. Finally, ηtr is the learning rate when testing
the attack.

C.1 SYNTHETIC EXAMPLE

For the synthetic experiment shown in Sect. 4 of the paper, we sample the attacker’s data from two
bivariate Gaussian distributions, N (µ0,Σ0) and N (µ1,Σ1), with mean vectors µi and covariance
matrices Σi for each class, i = 0, 1:

µ0 =

[
−3.0

0.0

]
, Σ0 =

[
2.5 0.0
0.0 1.5

]
,

µ1 =

[
3.0
0.0

]
, Σ1 =

[
2.5 0.0
0.0 1.5

]
.

The attacker uses 32 points (16 per class) for training and 64 (32 per class) for validation, and one
poisoning point cloned from the validation set (in the example of the paper, cloned from the set
labelled as blue), whose label is flipped. This poisoning point is concatenated into the training set
and the features of this point are optimized with RMD. In order to poison the LR classifier, we use
a learning rate and a number of hyperiterations for the poisoning point α = 0.4, TDp = 50; the
feasible domain Φ(Dp) ∈ [−9.5, 9.5]2; the learning rate and number of epochs for the inner problem
η = 0.2, T = 500; and when evaluating the attack, ηtr = 0.2, batch size = 32 (full batch), and
number of epochs = 100. When we apply regularization, we fix λ = log(20) ≈ 3.
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Name # Training
Samples

# Validation
Samples

# Test
Samples # Features

MNIST (‘0’ vs ‘8’) 512 171 1, 954 784
FMNIST (T-shirt vs pullover) 512 171 2, 000 784
ImageNet (dog vs fish) 512 171 600 2, 048

Table 1: Characteristics of the datasets used in the experiments.

Name TDp Tλ Tmul α β
MNIST (‘0’ vs ‘8’) (LR) 100 50 100 0.99 0.80
FMNIST (T-shirt vs pullover) (LR) 100 50 100 0.90 0.30
ImageNet (dog vs fish) (LR) 100 50 200 0.90 0.40

Name Φ(Dp) Φ(λ) η T
MNIST (‘0’ vs ‘8’) (LR) [0.0, 1.0]784 [−8, log(200)] 0.10 150
FMNIST (T-shirt vs pullover) (LR) [0.0, 1.0]784 [−8, log(400)] 0.08 200
ImageNet (dog vs fish) (LR) [−0.5, 0.5]2,048 [−8, log(20, 000)] 0.05 200

Table 2: Experimental settings for the poisoning attack.

Name ηtr Batch Size Number of Epochs
MNIST (‘0’ vs ‘8’) (LR) 10−2 64 200
FMNIST (T-shirt vs pullover) (LR) 10−2 64 200
ImageNet (dog vs fish) (LR) 10−3 64 300

Table 3: Experimental settings for training the models.

To plot the colormap that shows the value of the regularization hyperparameter learned (Fig. 1(right)
of the paper) as a function of the poisoning point injected in the training set, the values of λ explored
for each possible poisoning point are in the range [−8, 6]. Then, the optimal value of λ is chosen
such that it minimizes the error of the model, trained on each combination of the poisoning point
(concatenated into the training set) and λ in the grid, and evaluated on the validation set.

C.2 MNIST, FMNIST AND IMAGENET

In our experiments, all the results for MNIST ‘0’ vs ‘8’ (LeCun et al., 1998), Fashion-MNIST
(FMNIST) T-shirt vs pullover (Xiao et al., 2017), and ImageNet dog vs fish (Russakovsky et al., 2015)
(preprocessed as in (Koh & Liang, 2017)) are the average of 10 repetitions with different random
data splits for training and validation, whereas the test set is fixed. For all the attacks we measure the
average test error for different attack strengths, where the number of poisoning points is in the range
between 0 and 85. To reduce the computational cost, the size of the batch of poisoning points that
are simultaneously optimized is 17 for all the datasets. This way, we simulate six different ratios of
poisoning ranging from 0% to 16.6%.

The details of each dataset are included in Table 1. All the datasets are balanced. Moreover, both
MNIST and FMNIST sets are normalized to be in the range [0, 1]784, whereas for the ImageNet
sets we use the same Inception-v3 (Szegedy et al., 2016) features as in (Koh & Liang, 2017), and
normalized them with respect to their training mean and standard deviation.

For all the experiments, we make use of stochastic gradient descent both to update the parameters
in the forward pass of RMD4 (full batch training), and to train the model when testing the attack

4To refine the solutions obtained, when the poisoning points are learned and λ is fixed, and when the training
set is clean and λ is learned, if the optimization algorithm gets stuck in a poor local optimum we restart the bilevel
optimization procedure. In the case of the poisoning points, we reinitialize them with different values uniformly
sampled without duplicates from the validation set. For the regularization hyperparameters, let λ(τ) denote their
latest value: We reinitialize them with values uniformly sampled from the range

[
λ(τ) − 0.5, λ(τ) + 0.5

]
. It is

however noteworthy that these reinitializations were not crucial to obtain the results shown in the paper. The
exploration of warm-restart techniques in the case of minimax bilevel problems is left for future work.
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Figure 3: Histograms (in terms of relative frequency) of the LR’s parameters. For a better visualisation,
the upper part of some subfigures has been omitted. The first row represents the case where no
regularisation is applied: (a) MNIST, (b) FMNIST, and (c) ImageNet. The second row shows the
case where λ is learned with RMD: (d) MNIST, (e) FMNIST, and (f) ImageNet.

(mini-batch training). The details of the attack settings are shown in Table 2, whereas the ones for
training are in Table 3. Additionally, λCLEAN is optimized with 5-fold cross-validation—training
the model on the clean dataset, as in (Xiao et al., 2015). For all the datasets the ranges of values of
λ explored to compute λCLEAN is [−8, 1] (no better performance was observed for larger values of
λ). On the other hand, to accelerate the optimization of λRMD, when the training set is clean these
hyperparameters are warm-started with a value λ = log(5) ≈ 1.61.

C.3 DETAILS OF THE HARDWARE USED

All the experiments are run on 2 × 11 GB NVIDIA GeForce® GTX 1080 Ti GPUs. The RAM
memory is 64 GB (4× 16 GB) Corsair VENGEANCE DDR4 3000 MHz. The processor (CPU) is
Intel® Core™ i7 Quad Core Processor i7-7700k (4.2 GHz) 8 MB Cache.

D HISTOGRAMS OF THE MODELS’ PARAMETERS

In Fig. 3 we represent the histogram of the values of the parameters, w, of the LR classifier on
MNIST, FMNIST and ImageNet, when the training sets are clean (blue bars) and when a 16.6% of
each training set is replaced by poisoning points (orange bars). To appreciate better the distribution
of the parameters, we omit the upper part of some plots. The first row depicts the cases when no
regularisation is applied, and the second row shows the case where λ is learned using RMD. We
can clearly appreciate the effect of the regularisation: For all the datasets, the range of values of the
parameters (blue bars of the second row) is narrowed down, and when the attacker injects poisoning
points, this forces the model to compress more these values (orange bars of the second row) close to 0,
as the value of λ increases. This leads to a more stable model under possible malicious manipulations
of the training data.
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