
Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

BASELINE PRUNING-BASED APPROACH
TO TROJAN DETECTION IN NEURAL NETWORKS

Peter Bajcsy and Michael Majurski
Information Technology Laboratory
National Institute of Standards and Technology
100 Bureau Drive. Gaithersburg, MD 20899
{peter.bajcsy, michael.majurski}@nist.gov

ABSTRACT

This paper addresses the problem of detecting trojans in neural networks (NNs)
by analyzing how NN accuracy responds to systematic pruning. This study lever-
ages the NN models generated for the TrojAI challenges. Our pruning-based ap-
proach (1) detects any deviations from the reference NN models, (2) measures
the accuracy of a set of systematically pruned NN models using multiple pruning
configurations, and (3) classifies each NN model as clean or poisoned by learn-
ing a mapping between accuracy measurements and reference clean or poisoned
NN model labels. This work outlines a theoretical and experimental framework
for finding the optimal mapping over a large search space of pruning parameters.
Based on our experiments using Rounds 1 - 4 TrojAI Challenge datasets, the ap-
proach achieves average classification accuracy between 68.51 % and 91.06 %.
Reference model graphs and source code are available from GitHub.

1 INTRODUCTION

This work addresses classifying neural network (NN) models into two classes: (1) models trained
without trojans (clean) and (2) models trained with trojans (poisoned). In other words, deciding
whether a model has a trojan hidden inside it. Trojans in NNs are defined as triggers inserted into
the inputs that cause misclassification into a class (or classes) unintended by the design of the model
Bajcsy et al. (2021), Gu et al. (2019). For example, trojans can be polygons inserted as innocuous
objects (triggers) into traffic sign images (foreground) to change the classification result. Such
triggers have been used to generate the datasets for multiple rounds of the Intelligence Advanced
Research Projects Agency (IARPA) TrojAI challenge IARPA (2020).

The goal of this work is to design a baseline approach for detecting (a) possible tampering with
the reference model architecture (i.e., changing a task-specific reference NN architecture) and (b)
the presence of trojans in a spectrum of architectures. Our approach is illustrated in Figure 1. The
“quality assurance” computations in Figure 1 are based on our prior knowledge about reference
model files and architecture graphs in order to detect deviations from the reference. The “signal
measurement” computations in Figure 1 focus on measuring accuracies of systematically pruned
models. Finally, the “NN model classification” computations derive and apply a mapping between
accuracies of pruned models and labels denoting the presence of an embedded trojan. The main
challenges lie in estimating the optimal mapping, in collecting signal measurements within a time
limit, and in making the mapping robust to many architectures and to complex trojan characteristics.

Our contributions lie in the design of a baseline trojan detection approach that

• leverages well-established filter pruning approaches and their existing implementations
(provides a baseline),

• evaluates multiple pruning, ranking, and sampling methods into model pruning (includes
optimization),

• collects model accuracy measurements over a wide spectrum of architectures and with
varying number of input images (delivers robustness), and

1

Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Figure 1: Overview of NN model classification workflow

• incorporates classification accuracy and execution speed tradeoffs into the trojan detection
design (measures scalability).

2 RELATED WORK

The design of trojan detection algorithms is a relatively new area of research. According to the
statistics derived from the publications listed at Kulp-McDowall et al. (2020) in 2020, two re-
lated publications appeared in Arxiv before 2017, eight in 2017, 15 in 2018, 31 in 2019, and 57 in
2020. The research interest increased as IARPA and Defense Advanced Research Projects Agency
(DARPA) announced the TrojAI IARPA (2020) and Guaranteeing AI Robustness Against Deception
(GARD) Siegelmann (2019) programs in 2019. With more research efforts invested into designs of
trojan detectors Xu et al. (2019); Jha et al. (2019); Erichson et al. (2020), there is a need to establish
a baseline method that is simple, but generally applicable, and provides results that are better than a
chance Ameisen (2018).

Our survey of available GitHub pruning-based solutions jacobgil et al. (2020) highlighted the exist-
ing challenges in terms of the limited number of supported model architectures, long execution
times, and dependencies on outdated libraries. For example, the GitHub implementation from
Molchanov et al. (2017) is applicable to VGG16 architectures and has been adapted to ConvNet,
AlexNet , ResNet18, InceptionV3, and ResNet50 in limited settings. There is no pruning imple-
mentation that would work with the 22 model architectures presented in the TrojAI challenge. Thus,
our work could only partially leverage the GitHub implementation linked from Li et al. (2017).
Furthermore, while pruning techniques have been explored as a defense against Trojans Liu et al.
(2020), pruning has not been used for trojan detection.

3 METHODS

Classification Problem: Formally, given the following inputs:

• a set of clean images Di that represent samples from each predicted class Cl ∈ C;

• a model Mi ∈M of an architecture Gn ∈ G that predicts |C| classes

• a corresponding label for each model Mi:

– Li = 0→ clean or Trained without Trojan,
– Li = 1→ poisoned or Trained with Trojan,

the goal is to classify the modelMi as either clean or poisoned while minimizing the trojan detection
error within an allocated execution time Ti ≤ Tmax on a variety of computational platforms. Note:
|C| refers to the number of classes (cardinality of the set of labels C).

Pruning-based Approach: To solve the classification problem, we introduced quality assurance (QA)
based classification criteria and designed a supervised pruning-based classifier. The QA-based
classification assumes reference measurements about file size and model graphs are known. The

2

Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Figure 2: Illustration of targeted sampling method and l1 ranking method.

pruning-based classifier assumes that a trojan is encoded in convolutional filters because of image-
based trojans. Thus, one can discriminate NN models into clean and poisoned categories by system-
atic pruning of convolutional filters across all layers, measuring accuracies of pruned models ~Ai,
and estimating some function f(~Ai)→ Li. Our approach assumes that the accuracies as a function
of pruning configurations will have different trends for clean and poisoned models.

The approach is executed by searching for an optimal configuration of parameters θopt(Gn, D) per
model architecture Gn ∈ G that minimizes the NN classification error Lerrori subject to allocated
execution time Lexeci per NN model as shown in Equation 1.

min
θ(Gn,D)

|M(Gn)|∑
i=1

1

|M(Gn)|
∗ Lerrori (θ(Gn, D))

subject to Lexeci (θ(Gn, D)) ≤ 1

(1)

where |M(Gn)| is the number of NN models of the Gn architecture type and θ(Gn, D) is a set of
algorithmic configurations evaluated for each NN architecture type Gn. The term for classification
error Lerrori is defined as Lerrori = 1.0 − LACi or as a cross entropy (CE) loss LCEi according to
NIST (2020). The term for execution time Lexeci is defined as a percentage of maximum allocated
execution time Tmax.

Pruning configurations: The space of pruning configurations can be characterized by six parameters:
θ(Gn, D) = {PM,SM,RM, p, |S|, |D|}. Pruning methods PM consist of {Remove, Reset,
Trim}, sampling methods SM can be {Random, Uniform, Targeted}, ranking methods RM
include {l1, l2, l∞, stdev (standard deviation)}, and a sampling probability p can be in general any
real value p ∈ (0, 1) ∈ R per NN layer. The number of evaluated pruned models per configuration
is |S| ∈ Z>0 and the number of used evaluation images is |D| ∈ Z>0 where |D| is smaller than the
number of all available clean images in Di.

The Remove method completely removes the convolutional filter and re-connects inputs and out-
puts. The Reset method sets all filter coefficients to zero and the Trim method clamps the coeffi-
cients to the mean±k ∗ stdev, where the mean and stdev are computed from the convolutional filter
coefficients, and k ∈ (0, 1]. The sampling methods differ in choosing the set of filters for pruning.
For example, Figure 2 shows Targeted sampling method applied after l1 norm was used to rank
all filters in one layer. In this example, l1 norm is applied to all convolutional filters (top right) and
the filters are sorted accordingly (top left). Targeted sampling method selects |S| = 5 sample
sets of filters that are pruned (bottom left). For each of the |S| = 5 pruned models, the model accu-
racy is evaluated using |D| = 10 clean example images. Figure 2 (bottom right) shows an example
of accuracies measured over S1, S2, S3, S4 and S5 pruned models for clean and poisoned models.
While Targeted sampling selects contiguous filters from a sorted list, the Uniform sampling
method chooses uniformly distributed filters after ranking them. The Random sampling method
selects filters randomly and the sampling is repeated |S| times.

Reduction of Search Space: To reduce the search space size
∏|L(Gn)|
j=1 (2|Fj | − 1) for a NN archi-

tecture Gn that consists of |L| convolutional layers with a varying number of convolutional filters

3

Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

Table 1: Summary of Input Datasets
Inputs |M | |G| |C| |D| |M | per 24h

Round 1 1000 3 5 500 100
Round 2 1104 22 [5, 25] |C| ∗ {10, 20} 144
Round 3 1008 22 [5, 25] |C| ∗ {10, 20} 288
Round 4 1108 15 [15, 45] |C| ∗ {2, 5} 288

Table 2: Summary of results. |PC| is the number of pruning configurations explored and T|PC| is
the computational time required to explore |PC|.

Round R1 R2 R3 R4
Accuracy 68.51 % 83.10% 91.06 % 86.77 %
CE Loss 0.5670 0.3223 0.2052 0.2304

T permodelexec [s] 131 141 168 85
|PC| 37 26 20 58

T|PC| [h] 643 531 876 826

|Fj | within each layer j, we make the following assumptions. Significance of a convolutional filter
to class predictions is related to the norm of the filter coefficients Li et al. (2017); Ye et al. (2018).
Since there is no theory nor guidelines about how to rank NN convolutional layers based on their
influence on the output Ye et al. (2018), we assumed that all layers are equally significant to class
predictions and applied the same sampling probability p of removed filters to all layers. Finally, we
restrict the function f(~Ai(Mi, θn)) to a multiple linear regression since this is a baseline method.

4 EXPERIMENTAL RESULTS

TrojAI challenge datasets are described at NIST (2020). Given the notation in Section 3, the datasets
for Rounds 1 - 4 are summarized in Table 1. We confirmed that model file sizes and their variations
do not predict clean or poisoned labels. In addition, we extracted reference model graphs and used
them for detecting graph deviations. All performance benchmarks were collected on a desktop
running Ubuntu 18.04, with 8 CPU cores (Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz), and
192 GB RAM. The implementation only utilizes CPU resources. The results are summarized in
Table 2. Figure 3 illustrates example results for the Round 2 dataset shown per architecture.

5 CONCLUSION

We presented a baseline pruning-based approach to trojan detection that was evaluated on 4220 NN
models from TrojAI Challenge (Rounds 1 - 4 datasets).

Figure 3: Classification accuracy and average cross entropy loss metrics applied to Round 2 dataset
for the found optimal parameters θn per architecture.

4

Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

REFERENCES

Emmanuel Ameisen. Always start with a stupid model, no ex-
ceptions. https://blog.insightdatascience.com/
always-start-with-a-stupid-model-no-exceptions-3a22314b9aaa, 3
2018.

Peter Bajcsy, Nicholas J. Schaub, and Michael Majurski. Designing trojan detectors in neural net-
works using interactive simulations. Applied Sciences, 11(4), 2021. ISSN 2076-3417. doi:
10.3390/app11041865. URL https://www.mdpi.com/2076-3417/11/4/1865.

N. Benjamin Erichson, Dane Taylor, Qixuan Wu, and Michael W. Mahoney. Noise-response anal-
ysis for rapid detection of backdoors in deep neural networks. https://arxiv.org/pdf/
2008.00123.pdf, 2020.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. https://arxiv.org/abs/1708.06733, 2019.

IARPA. Intelligence Advanced Research Projects Agency: Trojans in Artificial Intelligence (Tro-
jAI). https://pages.nist.gov/trojai/, 1 2020.

jacobgil, wanglouis49, zepx, eeric, and insomnia250. Model Pruning Implementations in GitHub
by the listed GitHub users. https://github.com, 12 2020.

Susmit Jha, Sunny Raj, Steven Lawrence Fernandes, Sumit Kumar Jha, Somesh Jha, Brian Jalaian,
Gunjan Verma, and Ananthram Swami. Attribution-based confidence metric for deep neural net-
works. Advances in Neural Information Processing Systems, 32(NeurIPS), 2019. ISSN 10495258.

Taylor Kulp-McDowall, Alden Dima, and Michael Majurski. TrojAI Literature Review. https:
//github.com/usnistgov/trojai-literature, 12 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
Efficient ConvNets. In International Conference on Learning Representations, pp. 1–13, Palais
des Congrès Neptune, Toulon, France, 2017.

Yuntao Liu, Ankit Mondal, Abhishek Chakraborty, Michael Zuzak, Nina Jacobsen, Daniel Xing,
and Ankur Srivastava. A survey on neural trojans. In 2020 21st International Symposium on
Quality Electronic Design (ISQED), pp. 33–39, 2020. doi: 10.1109/ISQED48828.2020.9137011.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. 5th International Conference on Learning Rep-
resentations, ICLR 2017 - Conference Track Proceedings, (2015):1–17, 2017.

NIST. Datasets for Trojans in Artificial Intelligence (TrojAI). https://pages.nist.gov/
trojai/, 12 2020.

Hava Siegelmann. Guaranteeing AI Robustness against Deception (GARD). https://www.
darpa.mil/program/guaranteeing-ai-robustness-against-deception,
2019.

Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, and Bo Li. Detecting AI Trojans
Using Meta Neural Analysis. http://arxiv.org/abs/1910.03137, 2019.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. https://arxiv.org/abs/1802.
00124, 2018.

A APPENDIX: DISCLAIMER

Commercial products are identified in this document in order to specify the experimental procedure
adequately. Such identification is not intended to imply recommendation or endorsement by the Na-
tional Institute of Standards and Technology, nor is it intended to imply that the products identified
are necessarily the best available for the purpose.

5

https://blog.insightdatascience.com/always-start-with-a-stupid-model-no-exceptions-3a22314b9aaa
https://blog.insightdatascience.com/always-start-with-a-stupid-model-no-exceptions-3a22314b9aaa
https://www.mdpi.com/2076-3417/11/4/1865
https://arxiv.org/pdf/2008.00123.pdf
https://arxiv.org/pdf/2008.00123.pdf
https://arxiv.org/abs/1708.06733
https://pages.nist.gov/trojai/
https://github.com
https://github.com/usnistgov/trojai-literature
https://github.com/usnistgov/trojai-literature
https://pages.nist.gov/trojai/
https://pages.nist.gov/trojai/
https://www.darpa.mil/program/guaranteeing-ai-robustness-against-deception
https://www.darpa.mil/program/guaranteeing-ai-robustness-against-deception
http://arxiv.org/abs/1910.03137
https://arxiv.org/abs/1802.00124
https://arxiv.org/abs/1802.00124

	Introduction
	Related Work
	Methods
	Experimental Results
	Conclusion
	Appendix: Disclaimer

