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ABSTRACT

Adversarial training suffers from robust overfitting, a phenomenon where the
robust test accuracy starts to decrease during training. In this paper, we focus on
reducing robust overfitting by using common data augmentation schemes. We
demonstrate that, contrary to previous findings, when combined with model weight
averaging, data augmentation can significantly boost robust accuracy. We evaluate
our approach on CIFAR-10 against `∞ and `2 norm-bounded perturbations of size
ε = 8/255 and ε = 128/255, respectively. We show large absolute improvements
of +2.93% and +2.16% in robust accuracy compared to previous state-of-the-art
methods. In particular, against `∞ norm-bounded perturbations of size ε = 8/255,
our model reaches 60.07% robust accuracy without using any external data.

1 INTRODUCTION

Despite their success, neural networks are not intrinsically robust. In particular, it has been shown
that the addition of imperceptible deviations to the input, called adversarial perturbations, can cause
neural networks to make incorrect predictions with high confidence (Carlini & Wagner, 2017a;b;
Goodfellow et al., 2015; Kurakin et al., 2016; Szegedy et al., 2014). Starting with Szegedy et al.
(2014), there has been a lot of work on understanding and generating adversarial perturbations
(Carlini & Wagner, 2017b; Athalye & Sutskever, 2018), and on building defenses that are robust
to such perturbations (Goodfellow et al., 2015; Papernot et al., 2016; Madry et al., 2018; Kannan
et al., 2018). Among successful defenses are robust optimization techniques like the one developed
by Madry et al. (2018) that learn robust models by finding worst-case adversarial perturbations at
each training step. Since Madry et al. (2018), various modifications to their original implementation
have been proposed (Zhang et al., 2019; Xie et al., 2019; Pang et al., 2020; Huang et al., 2020; Rice
et al., 2020; Gowal et al., 2020).

Notably, Hendrycks et al. (2019); Carmon et al. (2019); Uesato et al. (2019); Zhai et al. (2019);
Najafi et al. (2019) showed that using additional data improves adversarial robustness, while Rice
et al. (2020); Wu et al. (2020); Gowal et al. (2020) found that data augmentation techniques did
not boost robustness. This dichotomy motivates this paper. In particular, we explore whether it is
possible to fix the training procedure such that data augmentation becomes useful (in the setting
without additional data). By making the observation that model weight averaging (WA) (Izmailov
et al., 2018) helps robust generalization to a wider extent when robust overfitting is minimized, we
propose to combine model weight averaging with data augmentation techniques. Overall, we make
the following contributions:

• We demonstrate how, when combined with model weight averaging, data augmentation techniques
such as Cutout (DeVries & Taylor, 2017), CutMix (Yun et al., 2019) and MixUp (Zhang et al.,
2018) can improve robustness.

• To the contrary of Rice et al. (2020); Wu et al. (2020); Gowal et al. (2020) which all tried data
augmentation techniques without success, we are able to use any of these three aforementioned
techniques to obtain new state-of-the-art robust accuracies. We find CutMix to be the most
effective method by reaching a robust accuracy of 60.07% on CIFAR-10 against `∞ perturbations
of size ε = 8/255 (an improvement of +2.93% upon the state-of-the-art).

∗Equal contribution
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(a) Adversarial training with and
without additional external data
from 80M-TI
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(b) Effect of WA without external
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Figure 1: We compare the robust accuracy against ε∞ = 8/255 on CIFAR-10 of an adversarially
trained Wide ResNet (WRN)-28-10. Panel (a) shows the impact of using additional external data from
80M-TI (Torralba et al., 2008) and illustrates robust overfitting. Panel (b) shows the benefit of model
weight averaging (WA) despite robust overfitting. Panel (c) shows that WA remains effective and
useful even when robust overfitting disappears. The graphs show the evolution of the robust accuracy
as training progresses (against PGD40). The jump in robust accuracy two-thirds through training is
due to a drop in learning rate.

2 PRELIMINARIES AND HYPOTHESIS

Adversarial training. Madry et al. (2018) formulate a saddle point problem to find model parame-
ters θ that minimize the adversarial risk:

argmin
θ

E(x,y)∼D

[
max
δ∈S

l(f(x+ δ;θ), y)

]
(1)

where D is a data distribution over pairs of examples x and corresponding labels y, f(·;θ) is a model
parametrized by θ, l is a suitable loss function (such as the 0− 1 loss in the context of classification
tasks), and S defines the set of allowed perturbations. For `p norm-bounded perturbations of size ε,
the adversarial set is defined as Sp = {δ | ‖δ‖p ≤ ε}. In the rest of this manuscript, we will use εp to
denote `p norm-bounded perturbations of size ε (e.g., ε∞ = 8/255) and for the inner optimization,
we use the Projected Gradient Descent (PGD) with K steps which we refer to as PGDK .

Robust overfitting. To the contrary of standard training, which often shows no overfitting in
practice (Zhang et al., 2017), adversarial training suffers from robust overfitting (Rice et al., 2020).
Robust overfitting is the phenomenon by which robust accuracy on the test set quickly degrades while
it continues to rise on the train set (clean accuracy on both sets continues to improve as well). Rice
et al. (2020) propose to use early stopping as the main contingency against robust overfitting, and
demonstrate that it also allows to train models that are more robust than those trained with other
regularization techniques (such as data augmentation or increased `2-regularization). They observed
that some of these other regularization techniques could reduce the impact of overfitting at the cost of
producing models that are over-regularized and lack overall robustness and accuracy. There is one
notable exception which is the addition of external data (Carmon et al., 2019; Uesato et al., 2019).
Fig. 1(a) shows how the robust accuracy (evaluated on the test set) evolves as training progresses
on CIFAR-10 against ε∞ = 8/255. Without external data, robust overfitting is clearly visible and
appears shortly after the learning rate is dropped (the learning rate is decayed by 10× two-thirds
through training in a schedule is similar to Rice et al., 2020 and commonly used since Madry et al.,
2018). Robust overfitting completely disappears when an additional set of 500K pseudo-labeled
images from 80M-TI (Torralba et al., 2008) is introduced.

Model weight averaging. Model weight averaging (WA) (Izmailov et al., 2018) can be imple-
mented using an exponential moving average θ′ of the model parameters θ with a decay rate τ (i.e.,
θ′ ← τ · θ′ + (1 − τ) · θ at each training step). During evaluation, the weighted parameters θ′
are used instead of the trained parameters θ. Gowal et al. (2020); Chen et al. (2021) discovered
that model weight averaging can significantly improve robustness on a wide range of models and
datasets. Chen et al. (2021) argue (similarly to Wu et al., 2020) that WA leads to a flatter adversarial
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Figure 2: Accuracy against ε∞ = 8/255 on
CIFAR-10 with and without using model weight
averaging (WA) when using MixUp or random
padding-and-cropping (Pad & Crop). The graph
shows the robust test accuracy against PGD40.
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Figure 3: Clean (without adversarial attacks) ac-
curacy and robust accuracy (against AA+MT)
for a WRN-28-10 trained against ε∞ = 8/255 on
CIFAR-10 for different data augmentation tech-
niques.

loss landscape, and thus a smaller robust generalization gap. Gowal et al. (2020) also explain that,
in addition to improved robustness, WA reduces sensitivity to early stopping. While this is true,
it is important to note that WA is still prone to robust overfitting. This is not surprising, since the
exponential moving average “forgets” older model parameters as training goes on. Fig. 1(b) shows
how the robust accuracy evolves as training progresses when using WA. We observe that, after the
change of learning rate, the averaged weights are increasingly affected by overfitting, thus resulting
in worse robust accuracy for the averaged model.

Hypothesis. As WA results in flatter, wider solutions compared to the steep decrease in robust
accuracy observed for Stochastic Gradient Descent (SGD) (Chen et al., 2021), it is natural to ask
ourselves whether WA remains useful in cases that do not exhibit robust overfitting. Fig. 1(c) shows
how the robust accuracy evolves as training progresses when using WA and additional external data
(for which standard SGD does not show signs of overfitting). We notice that the robust performance
in this setting is not only preserved but even boosted when using WA. Hence, we formulate the
hypothesis that model weight averaging helps robustness to a greater effect when robust accuracy
between model iterations can be maintained.

3 DATA AUGMENTATIONS

Limiting robust overfitting without external data. Rice et al. (2020) show that combining data
augmentation methods such as Cutout or MixUp with early stopping does not improve robustness
upon early stopping alone. While, these methods do not improve upon the “best” robust accuracy,
they reduce the extent of robust overfitting, thus resulting in a slower decrease in robust accuracy
compared to classical adversarial training (which uses random crops and weight decay). This can be
seen in Fig. 2 where MixUp without WA exhibits no decrease in robust accuracy, whereas the robust
accuracy of the standard combination of random padding-and-cropping without WA (Pad & Crop)
decreases immediately after the change of learning rate.

Verifying the hypothesis. Since MixUp preserves robust accuracy, albeit at a lower level than the
“best” obtained by Pad & Crop, it can be used to evaluate the hypothesis that WA is more beneficial
when the performance between model iterations is maintained. Therefore, we compare in Fig. 2 the
effect of WA on robustness when using MixUp. We observe that, when using WA, the performance
of MixUp surpasses the performance of Pad & Crop. Indeed, the robust accuracy obtained by the
averaged weights of Pad & Crop (in blue) slowly decreases after the change of learning rate, while
the one obtained by MixUp (in green) increases throughout training. Ultimately, MixUp with WA
obtains a higher robust accuracy despite the fact that the non-averaged model has a significantly
lower “best” robust accuracy than the non-averaged Pad & Crop model. This finding is notable as it
demonstrates for the first time the benefits of data augmentation schemes for adversarial training (this
contradicts to some extent the findings from three recent publications: Rice et al., 2020; Wu et al.,
2020; Gowal et al., 2020).
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PAD & CROP CUTMIX
SETUP CLEAN ROBUST CLEAN ROBUST

VARYING THE MODEL SIZE

WRN-28-10 84.32% 54.44% 86.09% 57.50%
WRN-34-10 84.89% 55.13% 86.18% 58.09%
WRN-34-20 85.80% 55.69% 87.80% 59.25%
WRN-70-16 86.02% 57.17% 87.25% 60.07%

Table 1: Robust test accuracy (against
AA+MT) against ε∞ = 8/255 on CIFAR-10
as the model size increases. We compare Pad
& Crop and CutMix.

`∞ `2
SETUP CLEAN ROBUST CLEAN ROBUST

WRN-28-10 (if not specified)

Wu et al. (2020) (WRN-34-10) 85.36% 56.17% 88.51% 73.66%
Gowal et al. (2020) (trained by us) 84.32% 54.44% 88.60% 72.56%
Ours (CutMix) 86.22% 57.50% 91.35% 76.12%

WRN-70-16

Gowal et al. (2020) 85.29% 57.14% 90.90% 74.50%
Ours (CutMix) 87.25% 60.07% 92.43% 76.66%

Table 2: Clean (without adversarial attacks) ac-
curacy and robust accuracy (against AA+MT)
on CIFAR-10 as we both test against ε∞ =
8/255 and ε2 = 128/255.

Exploring data augmentations. After verifying our hypothesis for MixUp, we investigate in
Sec. 4 if other augmentations can help maintain robust accuracy and also be combined with WA to
improve robustness. We concentrate on image patching techniques like Cutout (DeVries & Taylor,
2017), CutMix (Yun et al., 2019) and RICAP (Takahashi et al., 2018). We also evaluate automated
augmentation strategies like AutoAugment (Cubuk et al., 2019), RandAugment (Cubuk et al., 2020).

4 EXPERIMENTAL RESULTS

Experimental setup. In all the experiments we use model weight averaging (WA) (Izmailov et al.,
2018) with a decay rate τ = 0.999. All the technical details, hyperparameters, architecture and
evaluation procedure are described in the appendix.

Experimental results. We consider as baseline the Pad & Crop augmentation which reproduces
the current state-of-the-art set by Gowal et al. (2020). In Fig. 3, we compare this baseline with
various data augmentations, MixUp, Cutout, CutMix and RICAP, as well as learned augmentation
policies with AutoAugment and RandAugment. Three clusters are clearly visible. The first cluster,
containing AutoAugment and RandAugment, increases the clean accuracy compared to the baseline
but, most notably, reduces the robust accuracy. Indeed, these automated augmentation strategies have
been tuned for standard classification, and should be adapted to the robust classification setting. The
second cluster, containing RICAP, Cutout and CutMix, includes the three methods that occlude local
information with patching and provide a significant boost upon the baseline with +3.06% in robust
accuracy for CutMix and an average improvement of +1.79% in clean accuracy. The last cluster,
with MixUp, only improves the robust accuracy upon the baseline by a small margin of +0.91%. A
possible explanation lies in the fact that MixUp tends to either produce images that are far from the
original data distribution (when α is large) or too close to the original samples (when α is small). The
appendix contains more ablation analysis on all methods.

Table 1 shows the performance of CutMix and the Pad & Crop baseline when varying the model
size. CutMix consistently outperforms the baseline by at least +2.90% in robust accuracy across
all the model sizes. Table 2 shows the performance of CutMix on CIFAR-10 against ε∞ = 8/255
and ε2 = 128/255. We observe that using CutMix provides a significant boost in robust accuracy
for both threat models with up to +2.93% (in the `∞ setting) and +2.16% (in the `2 setting) when
training a WRN-70-16. Finally, we show the generality of our approach as using CutMix on CIFAR-
100 significantly improves on the state-of-the-art with our best model reaching 32.43% against
AUTOATTACK (in the `∞ setting). We refer to the appendix for more details on the CIFAR-100
experiments.

5 CONCLUSION

Contrary to previous works (Rice et al., 2020; Gowal et al., 2020; Wu et al., 2020), which have tried
data augmentation techniques to train adversarially robust models without success, we demonstrate
that combining data augmentations with model weight averaging can significantly improve robustness.
Our work provides novel insights into the effect of model weight averaging on robustness, which
we hope can further our understanding of robustness. All our models are available online at https:
//github.com/deepmind/deepmind-research/tree/master/adversarial robustness/iclrw2021data.
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Data Augmentation Can Improve Robustness
(Supplementary Material)

A RELATED WORK

Adversarial training. The adversarial training procedure (Madry et al., 2018) feeds adversarially
perturbed examples back into the training data. It has been augmented in different ways – with
changes in the attack procedure (e.g., by incorporating momentum; Dong et al., 2018), loss function
(e.g., logit pairing; Mosbach et al., 2018) or model architecture (e.g., feature denoising; Xie et al.,
2019). Another notable work by Zhang et al. (2019) proposed TRADES, which balances the trade-
off between standard and robust accuracy, and achieved state-of-the-art performance against `∞
norm-bounded perturbations on CIFAR-10. More recently, the work from Rice et al. (2020) studied
robust overfitting and demonstrated that improvements similar to TRADES could be obtained more
easily using classical adversarial training with early stopping. This later study revealed that early
stopping was competitive with many other regularization techniques and demonstrated that data
augmentation schemes beyond the typical random padding-and-cropping were ineffective on CIFAR-
10. Finally, Gowal et al. (2020) highlighted how different hyper-parameters (such as network size
and model weight averaging) affect robustness. They were able to obtain models that significantly
improved upon the state-of-the-art, but lacked a thorough investigation on data augmentation schemes.
Similarly to Rice et al. (2020), they also make the conclusion that data augmentations beyond random
padding-and-cropping do not improve robustness.

Data augmentation. Data augmentation has been shown to reduce the generalization error of
standard (non-robust) training. For image classification tasks, random flips, rotations and crops
are commonly used He et al. (2016). More sophisticated techniques such as Cutout (DeVries &
Taylor, 2017) (which produces random occlusions), CutMix (Yun et al., 2019) (which replaces parts
of an image with another) and MixUp (Zhang et al., 2018) (which linearly interpolates between two
images) all demonstrate extremely compelling results. As such, it is rather surprising that they remain
ineffective when training adversarially robust networks.

B EXPERIMENTAL SETUP

Architecture. We use WRNs (He et al., 2016; Zagoruyko & Komodakis, 2016) as our backbone
network. This is consistent with prior work (Madry et al., 2018; Rice et al., 2020; Zhang et al., 2019;
Uesato et al., 2019; Gowal et al., 2020) which use diverse variants of this network family. Furthermore,
we adopt the same architecture details as Gowal et al. (2020) with Swish/SiLU (Hendrycks & Gimpel,
2016) activation functions. Most of the experiments are conducted on a WRN-28-10 model which has
a depth of 28, a width multiplier of 10 and contains 36M parameters. To evaluate the effect of data
augmentations on wider and deeper networks, we also run several experiments using WRN-70-16,
which contains 267M parameters.

Outer minimization. We use TRADES (Zhang et al., 2019) optimized using SGD with Nesterov
momentum (Polyak, 1964; Nesterov, 1983) and a global weight decay of 5× 10−4. We train for 400
epochs with a batch size of 512, and the learning rate is initially set to 0.1 and decayed by a factor 10
two-thirds-of-the-way through training. We scale the learning rates using the linear scaling rule of
Goyal et al. (2017) (i.e., effective LR = max(LR× batch size/256,LR)). We also use model weight
averaging (WA) (Izmailov et al., 2018). The decay rate of WA is set to τ = 0.999.

Inner minimization. Adversarial examples are obtained by maximizing the Kullback-Leibler
divergence between the predictions made on clean inputs and those made on adversarial inputs (Zhang
et al., 2019). This optimization procedure is done using the Adam optimizer (Kingma & Ba, 2014)
for 10 PGD steps. We take an initial step-size of 0.1 which is then decreased to 0.01 after 5 steps.
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Figure 4: Robust test accuracy against AA+MT with ε∞ = 8/255 on CIFAR-10 as we vary the
decay rate of the model weight averaging. The model is a WRN-28-10, which is trained either with
CutMix or Pad & Crop.

Evaluation. We follow the evaluation protocol designed by Gowal et al. (2020). Specifically, we
train two (and only two) models for each hyperparameter setting, perform early stopping for each
model on a separate validation set of 1024 samples using PGD40 similarly to Rice et al. (2020)
and pick the best model by evaluating the robust accuracy on the same validation set . Finally,
we report the robust test accuracy against a mixture of AUTOATTACK (Croce & Hein, 2020b) and
MULTITARGETED (Gowal et al., 2019), which is denoted by AA+MT. This mixture consists in
completing the following sequence of attacks: AUTOPGD on the cross-entropy loss with 5 restarts
and 100 steps, AUTOPGD on the difference of logits ratio loss with 5 restarts and 100 steps and finally
MULTITARGETED on the margin loss with 10 restarts and 200 steps. The training curves, such as
those visible in Fig. 1, are always computed using PGD with 40 steps and the Adam optimizer (with
step-size decayed by 10× at step 20 and 30).

C ADDITIONAL EXPERIMENTS

Model weight averaging decay rate. In Fig. 4, we run an ablation study measuring the robust
accuracy obtained when varying the decay rate τ of model weight averaging (WA) and using either
Pad & Crop or CutMix. When using CutMix, the best robust accuracy is obtained at the highest decay
rate τ = 0.999. When using Pad & Crop, it is only obtained at a lower decay rate τ = 0.9925. This is
consistent with our observation from Sec. 3 that highlights how WA improves robustness to a greater
extent when robust accuracy can be maintained throughout training. As larger decay rates average
over longer time spans, they should better exploit the fact that CutMix maintains robust accuracy after
the learning rate is dropped to the contrary of Pad & Crop (see Fig. 6).

Mixing rate of MixUp. For completeness, we also vary the different hyper-parameters that define
the different data augmentations. In particular, for MixUp, we vary the mixing rate α. Remember
that MixUp blends images by sampling an interpolation point λ ∼ β(α, α) from a Beta distribution
with both its parameters set to α. Small values of α produce images near the original images, while
larger values tend to blend images equally. In Fig. 5(a), we observe that smaller values of α are
preferential (irrespective of whether we use model weight averaging). This conclusion is in line
with the recommended settings from Zhang et al. (2018) for standard training, but contradicts the
experiments made by Rice et al. (2020) who recommend a value of α = 1.4 for robust training. We
also note that using model weight averaging can increase robust accuracy by up to +5.79% when
using MixUp.

Window length of Cutout. CutOut creates random occlusions (i.e., anywhere in the original image)
of a fixed size (measured in pixels). Remember that CIFAR-10 images have a size of 32× 32 pixels.
The size of this occlusion is controlled by a parameter called the window length. Fig. 5(b) shows how
the robust accuracy varies as a result of changing this parameter. We notice that the optimal window
length is at 18 pixels whether model weight averaging (WA) is used or not. While WA is useful, it is
noticeably less powerful when using CutOut (as opposed to MixUp and CutMix) bringing only an
improvement of +2.05% in robust accuracy. This is clearly explained by the training curves shown in
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Figure 5: Robust test accuracy against AA+MT with ε∞ = 8/255 on CIFAR-10 as we vary (a) the
mixing rate α of MixUp, (b) the window length when using CutOut and (c) the window length when
using CutMix. The model is a WRN-28-10 and we compare the settings without and with model
weight averaging (in which case, we use τ = 0.999). As a reference, the same model trained with
Pad & Crop and model weight averaging reaches 54.44% robust accuracy.
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Figure 6: Accuracy against ε∞ = 8/255 on
CIFAR-10 without using model weight averaging
(WA) for different data augmentation schemes.
The model is a WRN-28-10 and the curves show
the evolution of the robust accuracy as training
progresses (against PGD40). The jump in robust
accuracy two-thirds through training is due to a
drop in learning rate.

MODEL CLEAN AA+MT AA

Cui et al. (2020) (WRN-34-10) 60.64% – 29.33%
WRN-28-10 (retrained) 59.05% 28.75% –
WRN-28-10 (CutMix) 62.97% 30.50% 29.80%
Gowal et al. (2020) (WRN-70-16) 60.86% 30.67% 30.03%
WRN-70-16 (retrained) 59.65% 30.62% –
WRN-70-16 (CutMix) 65.76% 33.24% 32.43%

Table 3: Clean (without adversarial attacks) accu-
racy and robust accuracy (AA+MT) on CIFAR-100
against ε∞ = 8/255 obtained by different models.
Robust accuracy against AUTOATTACK is also re-
ported for select models.

Fig. 6 that demonstrate that CutOut suffers from robust overfitting. It also provides further evidence
that support our hypothesis in Sec. 2.

Window length of CutMix. CutMix patches a rectangular cutout from one image onto another.
In Yun et al. (2019), the area of this patch is sampled uniformly at random (this is the setting used
throughout this paper). In this ablation experiment, however, we fix its size (i.e., window length)
and observe its effect on robustness. In Fig. 5(c), we observe that the optimal size is not the same
depending on whether model weight averaging (WA) is used. We also note that WA improves
robust accuracy by +3.14%. Overall, CutMix obtains the highest robust accuracy of any of the four
considered augmentations (including MixUp, CutOut and Pad & Crop).

CIFAR-100. Finally, to evaluate the generality of our approach, we evaluate CutMix on CIFAR-
100. The results are shown in Table 3. Our best model reaches 32.43% against AUTOATTACK and
improves noticeably on the state-of-the-art (in the setting that does not use any external data). It is
worth noting that the currently best known result on CIFAR-100 against ε∞ = 8/255 when using
external data is 36.88% against AUTOATTACK.
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Figure 7: Robust test accuracy measured by running AUTOPGD-CE with (a) different radii ε∞ and
(b) different number of steps K. The model is a WRN-70-16 network trained with CutMix against
ε∞ = 8/255, which obtains 60.07% robust accuracy against AA+MT at ε∞ = 8/255.

D ANALYSIS OF MODELS

In this section, we perform additional diagnostics that give us confidence that our models are not
doing any form of gradient obfuscation or masking (Athalye et al., 2018; Uesato et al., 2018).

AUTOATTACK and robustness against black-box attacks. First, we report in Table 4 the robust
accuracy obtained by our strongest models against a diverse set of attacks. These attacks are run as a
cascade using the AUTOATTACK library available at https://github.com/fra31/auto-attack. The cascade is
composed as follows:

• AUTOPGD-CE, an untargeted attack using PGD with an adaptive step on the cross-entropy loss
(Croce & Hein, 2020b),
• AUTOPGD-T, a targeted attack using PGD with an adaptive step on the difference of logits ratio

(Croce & Hein, 2020b),
• FAB-T, a targeted attack which minimizes the norm of adversarial perturbations (Croce & Hein,

2020a),
• SQUARE, a query-efficient black-box attack (Andriushchenko et al., 2020).

First, we observe that our combination of attacks, denoted AA+MT matches the final robust accuracy
measured by AUTOATTACK. Second, we also notice that the black-box attack (i.e., SQUARE) does
not find any additional adversarial examples. Overall, these results indicate that our empirical
measurement of robustness is meaningful and that our models do not obfuscate gradients.

MODEL NORM RADIUS AUTOPGD-CE + AUTOPGD-T + FAB-T + SQUARE CLEAN AA+MT

WRN-28-10 (CutMix)
`∞ ε = 8/255

61.01% 57.61% 57.61% 57.61% 86.22% 57.50%
WRN-70-16 (CutMix) 62.65% 60.07% 60.07% 60.07% 87.25% 60.07%

Table 4: Clean (without adversarial attacks) accuracy and robust accuracy (against the different stages
of AUTOATTACK) on CIFAR-10 obtained by different models. Refer to https://github.com/fra31/auto-attack
for more details.

Further analysis of gradient obfuscation. In this paragraph, we consider a WRN-70-16 trained
with CutMix against ε∞ = 8/255, which obtains 60.07% robust accuracy against AA+MT at
ε∞ = 8/255.

In Fig. 7(a), we run AUTOPGD-CE with 100 steps and 1 restart and we vary the perturbation radius ε∞
between zero and 64/255. As expected, the robust accuracy gradually drops as the radius increases
indicating that PGD-based attacks can find adversarial examples and are not hindered by gradient
obfuscation.
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In Fig. 7(b), we run AUTOPGD-CE with ε∞ = 8/255 and 1 restart and vary the number of steps K
between five and 1000. We observe that the measured robust accuracy converges after 50 steps. This
is further indication that attacks converge in 100 steps.

Loss landscapes. Finally, we analyze the adversarial loss landscapes of the model considered in
the previous paragraph. To generate a loss landscape, we vary the network input along the linear
space defined by the worse perturbation found by PGD40 (u direction) and a random Rademacher
direction (v direction). The u and v axes represent the magnitude of the perturbation added in each of
these directions respectively and the z axis is the adversarial margin loss (Carlini & Wagner, 2017b):
zy −maxi 6=y zi (i.e., a misclassification occurs when this value falls below zero).

Fig. 8 shows the loss landscapes around the first 2 images of the CIFAR-10 test set. All landscapes
are smooth and do not exhibit patterns of gradient obfuscation. Overall, it is difficult to interpret
these figures further, but they do complement the numerical analyses done so far.
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Figure 8: Loss landscapes around the first two images from the CIFAR-10 test set for the WRN-70-16
network trained with CutMix. This model obtains 60.07% robust accuracy. It is generated by varying
the input to the model, starting from the original input image toward either the worst attack found
using PGD40 (u direction) or a random Rademacher direction (v direction). The loss used for these
plots is the margin loss zy −maxi 6=y zi (i.e., a misclassification occurs when this value falls below
zero). The diamond-shape represents the projected `∞ ball of size ε = 8/255 around the nominal
image.
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