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ABSTRACT

Data poisoning is a threat model in which a malicious actor tampers with training
data to manipulate outcomes at inference time. A variety of defenses against this
threat model have been proposed, but each suffers from at least one of the fol-
lowing flaws: they are easily overcome by adaptive attacks, they severely reduce
testing performance, or they cannot generalize to diverse data poisoning threat
models. Adversarial training, and its variants, is currently considered the only em-
pirically strong defense against (inference-time) adversarial attacks. In this work,
we extend the adversarial training framework to instead defend against (training-
time) poisoning and backdoor attacks. Our method desensitizes networks to the
effects of poisoning by creating poisons during training and injecting them into
training batches. We show that this defense withstands adaptive attacks, gener-
alizes to diverse threat models, and incurs a better performance trade-off than
previous defenses.

1 INTRODUCTION

As machine learning systems consume more and more data, the data curation process is increasingly
automated and reliant on data from untrusted sources. Breakthroughs in image classification (Rus-
sakovsky et al., 2015) as well as text processing (Brown et al., 2020) are built on large corpora of
data scraped from the internet. Automated scraping, in which data is collected directly from online
sources, leaves practitioners vulnerable to data poisoning in which bad actors tamper with the data
so that models trained on this data perform poorly or contain backdoors embedded in them (Gu
et al., 2019; Shafahi et al., 2018). These attacks present security vulnerabilities that persist even if
the data is labeled and checked by crowd-sourced human supervision. In essence, entire machine
learning pipelines can be compromised if the input data is modified maliciously - even if the modifi-
cation appears minor and inconspicuous to a human observer. This mounting threat has instilled fear
especially in industry practitioners whose business models rely on powerful neural networks trained
on massive volumes of scraped data (Kumar et al., 2020).
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Figure 1: Data poisoning attacks require a new
approach to adversarial training to robustify ma-
chine learning models against this threat model.

In response to this growing threat, recent works
have proposed a number of defenses against
data poisoning attacks (Paudice et al., 2018; Ma
et al., 2019). Existing defense strategies suf-
fer from up to three primary shortcomings:1.
In exchange for robustness, they trade off test
accuracy to a degree that is intolerable to real-
world practitioners (Geiping et al., 2021). 2.
They are only robust to specific threat models
but not to adaptive attacks specially designed to
circumvent the defense (Koh et al., 2018; Tan &
Shokri, 2020). 3. They apply only to a specific
threat model and do not lend a generally appli-
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cable framework to practitioners (Wang et al., 2019). We instead propose a variant of adversarial
training that harnesses adversarially poisoned data in the place of (test-time) adversarial examples.
We show that this strategy exhibits both an improved robustness-accuracy trade-off as well as greater
flexibility for defending against a wide range of threats including adaptive attacks.

Adversarial training desensitizes neural networks to test-time adversarial perturbations by augment-
ing the training data with on-the-fly crafted adversarial examples (Madry et al., 2018). Similarly,
we modify training data in order to desensitize neural networks to the types of perturbations caused
by data poisoning - yet adapting this robust training framework to data poisoning requires special
consideration of this new threat model. For example, we must decide how to select targets dur-
ing training in order to simulate targeted data poisoning. We demonstrate the effectiveness of this
framework at defending against a range of data tampering threat models including both targeted data
poisoning and backdoor trigger attacks on both from-scratch training transfer learning.We visualize
the impact of the defense in feature space and compare to a range of related defense strategies.

2 RELATED WORK

Data poisoning is a class of threat scenarios focused on malicious modifications to the training data
of a machine learning model. See Goldblum et al. (2020) for an overview of dataset security. Data
poisoning attacks can either focus on denial-of-service attacks on model availability that reduce
overall model performance or on backdoor attacks that introduce malicious behavior into an oth-
erwise inconspicuous model which is triggered by a specific visual pattern or target image, thus
breaking model integrity (Barreno et al., 2010).

In this work, we focus on attacks against model integrity. In comparison to denial-of-service attacks,
which can be noticed before deployment, integrity attacks can insert undetectable backdoors even
into models that later pass into production and are used and relied upon in real-world scenarios.
These attacks can be further distinguished by the nature of their trigger mechanism. In backdoor
trigger attacks (Gu et al., 2019; Turner et al., 2018), the attack is triggered by a specific backdoor
pattern or patch that can be added to target images at test time, whereas targeted data poisoning
(Shafahi et al., 2018; Zhu et al., 2019) is triggered by a predefined target image. In contrast to
targeted poisoning, backdoor trigger attacks can be applied to multiple target images but require
target modifications to be active during inference, while targeted attacks are activated by specific,
but unmodified targets.

3 GENERALIZING ADVERSARIAL TRAINING TO DATA POISONING

Adversarial training (Madry et al., 2018; Sinha et al., 2018) reduces the impact of test-time ad-
versarial attacks and is generally considered the only strong defense against adversarial examples.
Adversarial training solves the saddle-point problem,

min
θ

E(x,y)∼D

[
max
∆∈S
Lθ(x+ ∆, y)

]
, (1)

where Lθ denotes the loss function of a model with parameters θ, and the adversary perturbs inputs
x from a data distribution D, subject to the constraint that perturbation ∆ is in S. Peri et al. (2020)
notes that adversarial training against test-time evasion attacks already confers a small degree of
robustness against data poisoning at a performance cost. Our proposed strategy is an adaptation of
adversarial training to poisoning, resulting in a stronger defense that degrades performance less than
differentially private SGD or adversarial training against evasion attacks. In our adversarial training
paradigm, two parties engage in a mini-max game; the attacker maliciously poisons the training data
to cause the model to mis-classify targets, while the defender trains the model to correctly classify
both poisons and targets. As we describe in the previous section, the capabilities of an attacker de-
pend on its knowledge of the defender’s training setup, so we now enumerate a series of assumptions
concerning the knowledge of the attacker and defender before presenting our framework in precise
detail.
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Table 1: Quantitative result for several attacks and their defense by adversarial poisoning with p =
0.75 for targeted poisoning and p = 0.5 for backdoor attacks, showing avg. poison success with
standard error (where all trials have equal outcomes, we report the worst-case error estimate 5.59%).
The proposed defense significantly decreases success rates over a wide range of attacks and scenarios
without any hyperparameter changes.

ATTACK SCENARIO UNDEFENDED SUCCESS DEFENDED SUCCESS

BACKDOOR TRIGGERS FROM-SCRATCH 87.38% (±2.24) 12.93% (±4.59)

GRADIENT MATCHING FROM-SCRATCH 90.00% (±6.71) 0.00% (±5.59)

BULLSEYE POLYTOPE FINE-TUNING 75.00% (±9.68) 0.00% (±5.59)

BULLSEYE POLYTOPE TRANSFER 100.00% (±5.59) 10.00% (±6.71)
POISON FROGS TRANSFER 100.00% (±5.59) 15.00% (±7.98)
GRADIENT MATCHING (SE) TRANSFER 95.00% (±4.87) 0.00% (±5.59)

CONVEX POLYTOPE TRANSFER* 90.00% (±10.00) 40.00 % (±16.32)

HIDDEN TRIGGER BACKDOOR TRANSFER 55.59% (±5.65) 24.78% (±6.82)

3.1 ADVERSARIAL POISONING

Conceptually poisoning attacks differ from evasion attacks through their intermediacy; the attacker
modifies some sample xp of the data distribution D within constraints S, to change model behavior
when evaluated on another sample xt. As such, the defender needs to train to be invariant to any
such modifications. Formally, adversarial poisoning thus requires approximating a robust estimation
objective given by

min
θ

E(xp,yp)∼D
(xt,yt)∼D

[Lθ(xp + ∆p, yp) + Lθ(xt + ∆t, yt)]

s.t. ∆p,∆t ∈ arg min
∆p,∆t∈S

Ladv(xp + ∆p, xt + ∆t, θ),
(2)

where Lθ denotes the loss of a model with parameters θ, and Ladv denotes the objective function
of an arbitrary data poisoning attack. xp simulates training data (to be poisoned with ∆p) and xt
simulates a target with possible trigger ∆t. For example, in gradient matching, ∆t is zero since such
an attack does not modify targets, and ∆p ∈ arg min∆∈S sim (∇θLθ(xp + ∆, yp),∇θLθ(xt, yp))
minimizes the cosine similarity, while for simple backdoor triggers ∆p = ∆t are non-optimized
randomly drawn patches. This robust estimation problem is a strict generalization of adversarial
training, which we can recover via Ladv = −

∑
i∈{p,t} Lθ(xi + ∆i, yi).

To realize an approximation to this objective, given each mini-batch of data, we first split this batch
into two subsets of data, (xp, yp) and (xt, yt), at random with probability p for an image to be placed
in the poison partition, we then run a chosen data poisoning attack with xp, xt, and then train the
model on the concatenated output, as seen in fig. 1. This way we alternate between both steps in
eq. (2) effectively, modifying one part of the batch to indirectly influence the other part and training
against this. The full algorithm is summarized in algorithm 1.

4 EXPERIMENTS

This section details a quantitative analysis of the proposed defense for the application of image
classification with deep neural networks. To fairly evaluate all attacks and defenses, especially in
light of Schwarzschild et al. (2020) discussing the difficulty in comparing attacks across different
evaluation settings, we implement all attacks and defenses in a single unified framework, which we
will make publicly available. For all experiments, we measure avg. poison success over 20 trials,
where each trial represents a randomly-chosen attack trigger from a random class and a separately
attacked and trained model. The sampling of randomized attack triggers is crucial to estimate the
average performance of poisoning attacks, which are generally more effective for related class labels.
We discuss additional experimental details in the supp. material.
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Figure 2: Avg. Poison Success versus validation accuracy for various defenses against the gradient
matching attack of (Geiping et al., 2021) in the from-scratch setting. The baseline undefended
model is shown in blue, the proposed defense in red. The differentially private SGD is shown for
noise values from 0.0001 to 0.01. The proposed defense provides a strong trade-off of robustness
and accuracy.

4.1 DEFENDING IN DIVERSE SCENARIOS

To evaluate the proposed defense mechanism thoroughly, we first apply the proposed defense against
a range of attacks and settings in table 1, choosing p = 0.75 for all targeted data poisoning attacks
and p = 0.5 for all backdoor attacks and no additional modifications. All attacks shown are adaptive,
if possible. In the fine-tuning and transfer scenarios, the pre-trained model is defended but known
to the attacker exactly. In all cases, we observe that while the attacks are highly effective against
an undefended model, our defense steeply reduces the effectiveness of both poisons and backdoors.
These encouraging results suggest that the proposed methodology is a strong strategy that can be
robustly applied across a range of attacks and may also be applicable to new settings and attacks
proposed the future.

4.2 COMPARISON TO OTHER DEFENSES

In this subsection, we compare the proposed defense to other existing defense strategies against data
poisoning including differentially private SGD, adversarial training, various data augmentations, and
filter defenses. For differentially private SGD and adversarial training, we test several noise levels
and perturbation budgets, respectively. When comparing to filtering defenses, we allow an optimal
hyperparameter choice by supplying the exact number of poisons in the training set, although this
information would be unknown in practice. We analyze adversarial poisoning with varying levels of
p to show the trade-off of performance and security.

We conduct our comparison in the common from-scratch setting, where the entire model is re-
trained. We test the gradient matching attack proposed in Geiping et al. (2021), for a ResNet-18
trained on CIFAR-10 with budget 1% and ε = 16. While previous defenses were shown to be
ineffective in Geiping et al. (2021), we now show in fig. 2 that the proposed adversarial poison-
ing defense is an extremely effective defense in the from-scratch setting, yielding a much stronger
protection than filter defenses, but with only mild trade-off in validation accuracy compared to dif-
ferential privacy and adversarial training.

5 CONCLUSIONS

In this work, we adapt adversarial training to defend against data poisoning and backdoor attacks.
In addition to demonstrating the strong defensive capabilities of our method, adversarial poisoning,
we analyze the feature space of defended models and observe mechanisms of defense. We stress
that we believe this strategy to be a general paradigm for defending against data tampering attacks
that can extend to novel future attacks. We are especially interested in understanding this defense
better empirically for backdoor attacks as well. Works such as Sun et al. (2020) show that backdoor
attacks can fundamentally representations of attacked networks and we wonder if these effects are
stabilized by training robustly defended models.
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A APPENDIX

A.1 ADAPTIVE ATTACK SCENARIOS

A crucial step in the design of new defense algorithms is their ability to withstand adaptive attacks,
i.e. strong attacks that can be modified to respond to a novel defense algorithm when the attacker
is aware of the defense. While this principle has been well-regarded in literature about adversarial
attacks at test-time Carlini et al. (2019); Tramer et al. (2020), it has not been applied as rigorously
for data poisoning.

The defense proposed in this work is exceedingly effective against non-adaptive models (evaluating
the exemplary case of gradient matching), as the difference in training regimes leads to incorrect
perturbations computed by the attacker that relies on a pre-trained surrogate model. However, this
would also be the case for most modifications to the training procedure, such as adding data aug-
mentations or changing learning rates or optimizer settings. As such, we find that the optimal way
to attack this defense is for the attacker to re-train their pre-trained model with exactly the same
defense and the same hyperparameters. The attacker can then more accurately estimate the target
gradient (for gradient matching) or target features (for feature collision). We also investigated the
possibility of applying algorithm 1 during the optimization of poisoned data itself as an additional
stochastic input modification. However, this modification weakens the attack by gradient masking,
making it too difficult for the attacker to optimize the poisoned data. This behavior mirrors (test-
time) adversarial attacks, where it is non-optimal to add additional perturbations during the creation
of an adversarial perturbation. As we will find in the analysis section, the defense has a major im-
pact on the feature space of a model, which may make it difficult to bypass the defense with other
adaptive attacks.

instances would likely be small. However, poisoned data points in Geiping et al. (2021) are in
practice chosen from the same class as the target adversarial label, and this choice can be replicated
for the randomly chosen subset of poisoned data points xp with labels yp by choosing yt as the label
that appears most often in yp.
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Algorithm 1 Modified iterative training routine.

Input: Split probability p ∈ (0, 1).
repeat

Sample mini-batch of data {xi, yi}ni=1,
Split data randomly into two subsets xp, xt with probability p
Draw malicious labels yt for xt
Apply a data poisoning attack modifying xp + ∆p to reclassify xt + ∆t as yt
Concatenate xp, xt into a new batch xm
Update model based on new data xm

until training finished

B ANALYSIS

(a) Undefended model, clean (left) and retrained on
poisoned
data containing gradient matching attacks (right).

(b) Defended model, clean (left) and retrained on poi-
soned
data containing gradient matching attacks (right).

Figure 3: Visualization of the effects of data poisoning attacks via gradient matching against an
undefended and a defended model. The target image is marked by a black triangle and is originally
part of the class colored blue. The poisoned images are colored red and are part of the class colored
green. The x-y axis in each diagram corresponds to a projection of the principal direction separating
both classes, while the confidence in the original target class is marked on the z-axis.

To understand the effect of the proposed adversarial poisoning scheme qualitatively, we conduct an
analysis of feature space visualizations.

In fig. 3, we analyze the defense against the gradient matching attack of Geiping et al. (2021) in the
from-scratch setting, where the model is fully re-trained. The attack can be seen to be effective in
fig. 3a, changing the decision boundary of the model to fit the target without collisions by clustering
poisons opposite to the target in feature space, significantly moving the target. However, this is
prevented by the defense as seen in fig. 3b. The robust model is not modified by the clustering of
poisoned images, and outliers seen in the undefended model are again reclassified as the target class
leading to a consistent decision. An interesting side effect of the defense for both attacked and clean
models is that the model itself is generally less over-confident in its clean predictions.
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