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ABSTRACT

Adversarial attacks craft perturbations during inference to fool already trained
models. In contrast, data poisoning attacks manipulate training data. Early poison-
ing works focused on inducing a large performance drop in linear models which
train on the modified data, but these methods are not effective against deep neural
networks. In this work, we discover that adversarial examples, originally intended
for attacking pre-trained models, are even more effective for data poisoning than
existing data poisoning methods. Models trained on adversarially perturbed data
cannot even recognize the original unperturbed training images. Our findings indi-
cate that adversarial examples look fundamentally different from clean examples
to neural networks, and learning on one is useless for performing inference on the
other. Furthermore, adversarial examples with labels re-assigned by the crafting
network are ineffective poisons, suggesting that adversarial examples contain useful
semantic content, just from the incorrect classes.

1 INTRODUCTION

The threat of malicious dataset manipulations is ever increasing as the training data curation process
for machine learning systems is increasingly void of human supervision. Automated scraping has
become necessary to satisfy the exploding demands of cutting-edge deep models (Bonawitz et al.,
2019; Brown et al., 2020), but the same automation that enables massive performance boosts exposes
these models to security vulnerabilities (Bagdasaryan et al., 2020; Chen et al., 2020). Data poisoning
attacks manipulate training data in order to cause the resulting models to misclassify samples during
inference (Koh & Liang, 2017), while backdoor attacks embed exploits which can be triggered by
pre-specified input features (Chen et al., 2017). In this work, we focus on a flavor of data poisoning
known as availability attacks, which aim to degrade overall testing performance ?Biggio et al. (2012).

Adversarial attacks instead focus on manipulating samples at test-time, rather during training (Szegedy
et al., 2013). In this work, we connect adversarial and poisoning attacks by showing that adversarial
examples form stronger availability attacks than any existing poisoning method, even though the latter
were designed specifically for manipulating training data while adversarial examples were not. We
compare our method, adversarial poisoning, to all existing availability attacks for neural networks,
and we exhibit consistent performance boosts. In fact, models trained on adversarial examples may
exhibit test-time performance below that of random guessing.

∗Authors contributed equally.
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Intuitively, adversarial examples look dramatically different from the originals in the eye of neural
networks despite the two looking similar to humans. Thus, models trained only on such perturbed
examples are completely unprepared for inference on the clean data. In support of this intuition, we
observe that models trained on adversarially perturbed training data cannot even classify the original
clean training samples.

But does this phenomenon occur simply because adversarial examples are off the “natural image
manifold” or because they actually contain informative features from other classes? Popular belief
assumes that adversarial examples live off the natural image manifold causing a catastrophic mismatch
when digested by models only trained on clean data (Khoury & Hadfield-Menell, 2018; Stutz et al.,
2019; Zhao et al., 2017). However, models trained on data with random additive noise (rather
than adversarial noise) perform well on noiseless data, suggesting that the affects of adversarial
examples do not simply arise from moving off the manifold (see Table 1). We instead find that since
adversarial attacks inject features that a model associates with incorrect labels, training on these
examples is similar to training on mislabeled training data. After re-labeling adversarial examples
with the ”wrong” prediction of the network with which they were crafted, models trained on such
label-corrected dataset perform substantially better than models trained on uncorrected adversarial
examples and almost as well as models trained on clean images.

2 RELATED WORK

Data poisoning. Typical approaches to availability attacks involve solving a bilevel optimization
problem which minimizes loss with respect to parameters in the inner problem while maximizing
loss with respect to inputs in the outer problem (Biggio et al., 2012; Huang et al., 2020). On simple
models, the inner problem can be solved exactly, and many works leverage this (Biggio et al., 2012;
Mei & Zhu, 2015; Xiao et al., 2015), but on neural networks, obtaining exact solutions is intractable.
To remedy this problem, (Muñoz-González et al., 2017) approximates a solution to the inner problem
using a small number of descent steps, but the authors note that this method is ineffective against
deep neural networks. Other works adopt similar approximations but for integrity attacks on deep
networks, where the attacker only tries to degrade performance on one particular test sample (Geiping
et al., 2020; Huang et al., 2020). The bilevel approximation of Geiping et al. (2020) can also adapted
to availability attacks for neural networks by substituting the original targeted adversarial objective
with an indiscriminate adversarial objective. Another related approach harnesses influence functions
which estimate the impact of each training sample on a resulting model (Fang et al., 2020; Koh &
Liang, 2017; Koh et al., 2018). However, influence functions are brittle on deep networks whose loss
surfaces are highly irregular (Basu et al., 2020). In order to conduct availability attacks on neural
networks, recent works have instead modified data to cause gradient vanishing either explicitly or by
minimizing loss with respect to the image, thus removing the influence of data on training (Huang
et al., 2021; ?). We compare to these methods and find that adversarial poisoning is significantly
more effective.

Adversarial examples. Adversarial attacks probe the blindspots of trained models where they
catastrophically misclassify inputs that have undergone small perturbations (Szegedy et al., 2013).
Prototypical algorithms for adversarial attacks simply maximize loss with respect to the input while
constraining perturbations. The resulting adversarial examples exploit the fact that as inputs are even
slightly perturbed in just the right direction, their corresponding deep features and logits change
dramatically, and gradient-based optimizers can efficiently find these directions. The literature
contains a wide array of proposed loss functions and optimizers for improving the effectiveness of
attacks (Carlini & Wagner, 2017; Gowal et al., 2019). A number of works suggest that adversarial
examples are off the image manifold, and others propose methods for producing on-manifold attacks
(Khoury & Hadfield-Menell, 2018; Stutz et al., 2019; Zhao et al., 2017).

Adversarial training. The most popular method for producing neural networks which are robust to
attacks involves crafting adversarial versions of each mini-batch and training on these versions (Madry
et al., 2017). On the surface, it might sound as if adversarial training is very similar to training on
poisons crafted via adversarial attacks. After all, they both involve training on adversarial examples.
However, adversarial training ensures that the robust model classifies inputs correctly within a
ball surrounding each training sample. This is accomplished by updating perturbations to inputs
throughout training. This process desensitizes the adversarially trained model to small perturbations
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to its inputs. In contrast, a model trained on adversarially poisoned data is only encouraged to fit the
exact, fixed perturbed data.

3 ADVERSARIAL EXAMPLES AS POISONS

Formally stated, availability poisoning attacks aim to solve the following bi-level objective in terms
of perturbations δ = {δi} to elements xi of a dataset T

max
δ∈S

E(x,y)∼D

[
L (F (x; θ(δ)), y)

]
(1)

s.t. θ(δ) ∈ argmin
θ

∑
(xi,yi)∈T

L(F (xi + δi; θ), yi), (2)

where S denotes the constraint set of the perturbations. As is common in both the adversarial attack
and poisoning literature, we employ an ε- `∞ bound on each δi (Madry et al., 2017; Zhu et al., 2019;
Geiping et al., 2020). Unless otherwise stated, our attacks are bounded by ε = 8/255 as is common
on CIFAR-10 data in both adversarial and poisoning literature (Madry et al., 2017; Geiping et al.,
2020). Simply put, the attacker wishes to cause a network, F , trained on the poisons to generalize
poorly to distribution D from which T was sampled.

Directly solving this optimization problem is intractible for neural networks as it requires unrolling the
entire training procedure and backpropagating through it to perform a single step of gradient descent
on the outer objective. Thus, the attacker must approximate the bilevel objective. Approximations to
this objective often involve heuristics. For example, TensorClog aims to cause gradient vanishing in
order to disrupt training, while more recent work aims to align poison gradients with an adversarial
objective (?Geiping et al., 2020). We opt for an entirely different strategy and instead replace the
bi-level problem with an empirical loss maximization problem, thus turning the poison generation
problem into an adversarial example problem. Specifically, optimize the following objective:

max
δ∈S

[ ∑
(xi,yi)∈T

L (F (xi + δi; θ
∗), yi)

]
(3)

where θ∗ denotes the parameters of a pre-trained crafting model. Fittingly, we call our method
adversarial poisoning.

Projected Gradient Descent (PGD) has become the standard method for generating adversarial
examples for deep networks (Madry et al., 2017). Accordingly, we craft our poisons with 250 steps
of PGD on this loss-maximization objective. Borrowing from recent targeted data poisoning works,
we also employ differentiable data augmentation in the crafting stage (Geiping et al., 2020). We
study the effect of optimizer, data augmentation, steps, and crafting network on poison generation in
Appendix Tables 6, 7, and 8. These tables demonstrate that a wide variety of adversarial attacks with
various crafting networks and hyperparameters yield effective poisons.

We compare our method to existing availability attacks including TensorClog (?), Loss Minimization
(Huang et al., 2021), and an availability adaptation of the alignment poisoning method found in
Geiping et al. (2020). We find that poisons generated via the proposed method transfer to a variety of
common architectures in the black-box setting. These results can be found in Table 1 and appendix
Table 5. Compared with the previous best method (loss minimization), we degrade the validation
accuracy of a victim network by a factor of more than three. We also compare different methods
of adversarial example generation in appendix Table 4. Specifically, we comparere to a Carlini-
Wagner (CW) attack wherein the attacker aims to maximize the second highest logit in order to cause
misclassification (Carlini & Wagner, 2017), a vanilla Fast Gradient Sign Method (FGSM) attack
(Goodfellow et al., 2014), and a feature explosion attack where the attacker maximizes the `2 norm
of feature vectors. We find that while other adversaries do produce effective poisons, a PGD based
attack is the most effective in generating poisons.

Note that we test our method in a completely black-box setting wherein the attacker has no knowledge
of the victim network’s initialization, architecture, learning rate scheduler, optimizer, etc. We find our
adversarial poisons transfer across these settings and reliably degrade the validation accuracy of all
the models tested.

3



Published as a conference paper at ICLR 2021

Table 1: Validation accuracies of models trained on data from different availability attacks.
Tested on randomly initialized ResNet-18 models on CIFAR-10. All crafted with ε = 8/255.

METHOD VALIDATION ACCURACY (%, ↓)
NONE (CLEAN) 94.56
TENSORCLOG 84.24
ALIGNMENT 36.83

RANDOM NOISE 90.52
LOSS MINIMIZATION 19.93

ADVERSARIAL POISONING (OURS) 6.25

4 ANALYSIS

Why do adversarial examples make such potent poisons? In Section 1, we motivate the effectiveness
of adversarial poisons with the explanation that the perturbed data contains semantically useful
information, but for the wrong class. For instance, an adversarially perturbed “dog” might be labeled
as a “cat” by the crafting network because the perturbations contain discriminatory features useful for
the “cat” class. In Ilyas et al. (2019), the authors discover that there exist image features which are
both brittle under adversarial perturbations and useful for classification. Thus, adversarial examples
might poison networks so effectively because, for example, they teach the network to associate “cat”
features found in perturbed data with the label “dog” of the original, unperturbed sample. Then, when
the network tries to classify clean test-time data, it leverages the “mislabeled” features found in the
perturbed data and displays low test-time accuracy. We confirm this behavior by evaluating how
data is misclassified at test-time. We find that the distribution of predictions on clean data closely
mimics the distributions of labels assigned by the network used for crafting after adversarial attacks
(c.f. Appendix Figure 2).

To tease apart these effects, we conduct several experiments. First, we verify that the victim network
does indeed train - i.e. reach a region of low loss - on the adversarial examples. This is in contrast to
the motivation of ?Huang et al. (2021) which try to prevent the network from training on poisoned
data. We find that the victim network is able to almost perfectly fit the adversarial data. However, the
accuracy of the victim network on the original, unperturbed training data is just as low as accuracy
on the clean validation data, revealing an interesting duality - clean training data are adversarial
examples for networks trained on their perturbed counterparts (see Table 2). But are adversarial
examples simply so different from clean examples that learning on one is useless for performing
inference on the other? Or do adversarial examples contain useful features but for the wrong class?

To tease out these hypotheses, we train models on the adversarially poisoned data but with “corrected”
labels - labels assigned by the crafting network to the poisons, rather than the ground-truth label of
their clean counterparts. For example, if a “dog” is perturbed into the “cat” class by an adversarial
attack, we train on the perturbed “dog” image, but assign it the “cat” label. Intriguingly, we find that
this simple re-labeling trick boosts validation accuracy significantly. For example from 6.25% to
75.69% on a victim ResNet-18 model (see Table 3). This confirms the finding of Ilyas et al. (2019)
concerning non-robust features. One further intricacy remains; even if adversarial examples contained
no useful features, they may still encode decision boundary information that accounts for the increased
validation accuracy - behaviour that has previously been demonstrated with out-of-distribution data
in Nayak et al. (2019). However, we find that training on data from a drastically different distribution
(SVHN), labeled with the CIFAR-10 crafting network’s predictions, fails to achieve comparable
CIFAR-10 validation accuracy. This confirms that the adversarial CIFAR-10 images contain useful
features for the CIFAR-10 distribution but are simply mislabeled.

Table 2: Testing the victim on clean vs. adversarial training images. Poisons are crafted on a
CIFAR-10 trained ResNet-18 with 250 steps of PGD and differentiable data augmentation.

MEASUREMENT \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET121 MOBILENETV2
TRAINING ACC. ON POISONS 99.95± 0.00 99.99± 0.00 99.99± 0.00 99.99± 0.00 99.94± 0.00
ACC. ON CLEAN TRAIN DATA 10.98± 0.32 6.16± 0.16 6.80± 0.08 7.06± 0.13 6.15± 0.17
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Table 3: Training the victim with labels corrected to the “adversarial labels”. Poisons are crafted
on a CIFAR-10 trained ResNet-18 with 250 steps of PGD and differentiable data augmentation.

DATA \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET121 MOBILENETV2
UNCORRECTED CIFAR-10 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

CORRECTED ONE-HOT CIFAR-10 74.95± 0.31 78.98± 0.25 77.72± 0.37 78.55± 0.36 74.33± 0.24
CORRECTED SOFTMAX CIFAR-10 75.88± 0.25 75.69± 0.25 73.57± 0.47 70.26± 0.32 69.46± 0.32

CORRECTED ONE-HOT SVHN 31.13± 0.49 30.19± 0.16 40.71± 0.12 40.31± 0.43 34.18± 0.29
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A APPENDIX

A.1 VISUALIZATION

In Figure 1, we visualize randomly selected perturbed images at different ε levels. As with adversarial attacks,
and other poisoning attacks, there is a trade-off between visual similarity and potency of the perturbations.

Figure 1: Randomly selected example perturbations to CIFAR-10 datapoint (class “frog”). Left:
unaltered base image. Middle: ε = 4/255 perturbation. Right: ε = 8/255 perturbation. Networks
trained on perturbations including the one on the right achieve below random accuracy.

A.2 CLASSIFICATION PATTERNS

Here we experiment whether a class-wise targeted adversarial attack where every image from a given class is
perturbed into one different class. For example, all “dog” images might be perturbed to look like “cats”. We
then see whether the test-time behavior of the network mimics the attack pattern. Does a network trained on
adversarial poisons learn to associate “clean” cat features with dogs? We find that the pattern of clean, test-time
classification does indeed match that of the class-wise adversarial attacks - see Figure 2.
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(a) Adversarial attack predictions of network used to
craft adversarial poisons.

(b) Test-time predictions of network trained on adver-
sarial poisons.

Figure 2: Classification heatmaps. Left - heatmap of predictions after the adversarial attack on the
network used for crafting. Right - heatmap of clean test predictions after training a new network on
adversarial poisons.

(a) Test-time predictions of network trained on label-
corrected, class-targeted poisons.

(b) Test-time predictions of network trained on label-
corrected, class-targeted poisons without any images
of “cats”.

Figure 3: Classification heatmaps. Left - heatmap of clean test predictions from network trained on
label-corrected, class based targeted poisons. Right - heatmap of clean test predictions from network
trained on same poisons, without any “cat” images.

A.3 ABLATING DATA

We have seen that it is not necessary to have “correctly” labeled data (labeled with ground truth labels) in
order to get good performance at test-time. We can extend this to the question: does one need ground truth
data to learn how to classify? For example, can a network learn how to classify cats without ever seeing an
image of a cat, but instead only seeing images of dogs perturbed to look like cats? We find the answer is yes.
Specifically, we conduct an experiment where we craft targeted, class-based poisons (i.e. all images of one
class are perturbed via targeted attacks into another class). We then train on the label-corrected full data, and
also train on a label-corrected pruned training set without any images from the cat class (label 3, according to
the ground-truth labels). Interestingly, we find that the network trained on the ablated set is able to classify
clean, test-time images of cats having never seen an example during training! Moreover, the network fails to
classify clean images from the class into which cats were perturbed (class 6, “frog”) under the targeted attack.
Instead, clean test-time frogs are more likely to be classified as class 9 (“truck”) - the class where frog images
were perturbed into under the crafting attack. This means the network not only learns to associate the perturbed
features of frogs with the label “truck”, but also features of clean frog images even though the network never
encountered “clean” frog features during training because the cat class was ablated. These results can be found
in Figure 3.
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A.4 ADVERSARY COMPARISON

We find that a PGD based attack supersedes other common adversarial attacks in poison efficiency - a behavior
that has been observed in classical adversarial attacks as well. These results can be found in Table 4.

Table 4: Validation accuracies of victim models trained on data generated by different adver-
sarial attacks. Tested in the black-box setting on randomly initialized models on CIFAR-10.

METHOD \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET121 MOBILENETV2
PGD W/ AUG 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

CW 59.82± 1.36 48.40± 3.24 19.25± 1.15 43.40± 2.76 45.62± 4.87
FGSM 65.32± 0.58 76.35± 0.08 47.50± 1.06 59.44± 1.28 74.77± 0.43

FEATURE EXPLOSION 82.41± 0.38 83.26± 0.94 78.53± 0.49 81.83± 0.46 82.30± 0.88

A.5 EPSILON COMPARISON

We compare different values of the `∞ bound for the poisons and find that even with a very small perturbation,
ε = 4/255, adversarial poisons are able to significantly degrade the validation accuracies of randomly initialized
networks (see Table 5).

Table 5: Comparison of different ε-bounds for our adversarial poisoning method. All poisons
generated by ResNet-18 crafted with 250 steps of PGD, with differentiable data augmentation.

BOUND \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET121 MOBILENETV2
CLEAN 92.24± 0.09 94.56± 0.06 94.68± 0.02 94.90± 0.03 92.31± 0.06

ε = 4/255 52.97± 1.23 40.14± 0.50 41.06± 0.22 42.91± 0.51 33.99± 0.45
ε = 8/255 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

A.6 CRAFTING ABLATIONS

In Table 6, we find that the more steps we perform in the PGD optimization of adversarial poisons, the more
effective they become. However, the poisons still degrade validation accuracy at lower numbers of steps.

Table 6: Comparison of different number of crafting steps for our adversarial poisoning
method. All poisons generated by ResNet-18 with steps of PGD, with differentiable data aug-
mentation.

STEPS \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET121 MOBILENETV2
50 STEPS 25.10± 0.60 16.53± 0.26 18.51± 0.34 18.91± 0.34 15.29± 0.40
100 STEPS 16.06± 0.41 9.87± 0.26 11.66± 0.33 13.42± 0.28 10.38± 0.22
250 STEPS 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

Table 7: A comparison of different optimizers, crafting objectives, and use of differentiable
data augmentation in crafting. All poisons crafted with bound ε = 8/255. If not otherwise stated,
poisons are crafted with PGD, differentiable data augmentation.

METHOD \VICTIM VGG19 RESNET-18 GOOGLENET DENSENET121 MOBILENETV2
PGD W/ AUG 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17

SIGNADAM W/ AUG 8.92± 0.27 6.17± 0.27 6.75± 0.18 6.42± 0.23 7.15± 0.22
SIGNADAM W/O AUG 9.96± 0.22 6.96± 0.15 7.41± 0.15 7.84± 0.29 8.22± 0.23

CW LOSS 59.82± 1.36 48.40± 3.24 19.25± 1.15 43.40± 2.76 45.62± 4.87
FEATURE EXPLOSION LOSS 82.41± 0.38 83.26± 0.94 78.53± 0.49 81.83± 0.46 82.30± 0.88

A.7 NETWORK TRANSFERABILITY
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Table 8: Results varying the crafting network for the poisons. All poisons crafted with bound
ε = 8/255, PGD, differentiable data augmentation.

CRAFTING \TESTING VGG19 RESNET-18 GOOGLENET DENSENET121 MOBILENETV2
RESNET-18 10.98± 0.27 6.25± 0.17 7.03± 0.12 7.16± 0.16 6.11± 0.17
RESNET-50 17.86± 0.57 9.71± 0.12 11.44± 0.21 10.64± 0.46 6.82± 0.18

VGG19 20.88± 0.84 18.53± 1.15 21.48± 0.67 23.77± 0.74 17.59± 0.56
MOBILENETV2 21.66± 0.26 12.42± 0.17 14.84± 0.29 15.95± 0.18 9.60± 0.24

CONVNET 15.43± 0.34 10.05± 0.20 11.88± 0.17 10.30± 0.11 7.95± 0.26
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