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ABSTRACT

Adversarial robustness has become an ever accelerating challenge for neural net-
work owing to its over-sensitivity to small input perturbations. While being crit-
ical, we argue that solving this singular issue alone fails to provide a compre-
hensive robustness assessment. Even worse, the conclusions drawn from singular
robustness may give a false sense of overall model robustness. Specifically, our
findings show that adversarially trained models that are robust to input perturba-
tions are still (or even more) vulnerable to weight perturbations when compared
to standard models. In this paper, we formalize the notion of non-singular ad-
versarial robustness for neural networks through the lens of joint perturbations
to data inputs as well as model weights. To our best knowledge, this study is
the first work considering simultaneous input-weight adversarial perturbations.
Based on a multi-layer feed-forward neural network model with ReLU activation
functions and standard classification loss, we establish error analysis for quantify-
ing the loss sensitivity subject to `1-norm bounded perturbations on data inputs
and model weights. Based on the error analysis, we propose novel regularization
functions for robust training and demonstrate improved non-singular robustness
against joint input-weight adversarial perturbations.

1 INTRODUCTION

In spite of accomplishments achieved by machine learning in many tasks such as object recognition,
speech recognition and so on, predictors remain to fail miserably under the presence of impercepti-
ble perturbations, often known as ”adversarial examples” (Szegedy et al., 2014; Goodfellow et al.,
2014). These examples have long been the essence of many algorithms concerning adversarial ro-
bustness. The formal notion and framework gradually developed with the rise of such algorithms
(Fawzi et al., 2017; Biggio & Roli, 2018).

Concretely, adversarial examples are often created from unperturbed data within a norm-ball of
radius ✏. Moreover, the robustness of a model is largely defined as the minimum perturbation that
the input could change to alter the network’s correct output (Hein & Andriushchenko, 2017; Weng
et al., 2018). In Weng et al. (2020), the definition is to fit weight (model parameters) perturbation,
another type of attack that could cause model to ill-perform. We note that considering input or
weight perturbation alone is myopic and incomplete, as it only contributes to singular adversarial
robustness assessment. Furthermore, in Section 4 (Fig.1), we show that models trained under only
input perturbation would still suffer when encountering weight perturbation, and vice versa, which
suggests that those two singular robustness results poses the risk of offering limited, or even false,
sense of the comprehensive model robustness.

This paper resolves the gap by formalizing non-singular adversarial robustness of neural networks
and studying simultaneous input-weight perturbations. We develop theorems bounds concerning
pairwise margin on the classification loss for multi-layer neural networks with ReLU activations.
Moreover, we propose a new loss function based on previous margin bounds for training a robust
neural network against simultaneous perturbations and validate its effectiveness via experiments.

1



Under review at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

2 RELATED WORKS

Recent results discovered that the performance of a well-trained model could be devastated by
adversarial examples using either gradient-based approaches (Goodfellow et al., 2014; Kurakin
et al., 2017; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Chen et al., 2018; Xu et al.,
2019) or prediction outputs (Chen et al., 2017; Tu et al., 2019; Cheng et al., 2019). Several methods
were proposed later for investigating adversarial robustness. The state-of-the-art model by (Madry
et al., 2018) makes avail of a procedure known as adversarial training, where the model weights
are updated by minimizing the worst-case adversarial perturbations, forming a min-max training
objective. Wang et al. (2019) further proves the convergence of such training process. On the other
hand, Wu et al. (2020) demonstrated that by taking the landscape of loss-weight surface into ac-
count, the robust generalization gap under adversarial training would be narrowed. We note that this
is different from our setting where we consider robustness from both the input and parameter aspects.

Aside from input perturbation, Liu et al. (2017) and Zhao et al. (2019) proposed fault-injection
attacks which randomize the model parameters stored in memory by physically changing the
logical bits of the memory storage. Widrow & Lehr (1990) and Cheney et al. (2017) studied weight
perturbations applied on the internal architecture for generalization. Weng et al. (2020) showed that
by taking weight sensitivity into account, the model could maintain its performance after weight
quantization. Furthermore, Zhao et al. (2020) demonstrated that by taking advantages of mode
connectivity of the model’s parameters, one could mitigate or preclude the attacks based on weight
perturbations. As above results have shown that either part of the perturbations have been studied
explicitly while joint perturbation remains equivocal. Moreover, we note that adversarial training
subject to weight perturbations is not meaningful since the min-max procedure would fail in only
the parameter space. In this work, we consider when input and weight are both perturbed and prove
bounds for training a non-singular robust neural network against joint perturbations.

3 MAIN RESULTS

We first define in Section 3.1 the mathematical notation and preliminary. In Section 3.2, we intro-
duce the main theorem. Finally, in Section 3.3, we proceed to develop a theory-driven loss function.

3.1 NOTATIONS AND PRELIMINARY

We start by offering some mathematical notations used in this paper. Let [L] be the set containing
all positive integers smaller than L. As for the notation of vectors, boldface lowercase letter are
used (e.g. x) and the i-th element is marked as [x]i. Meanwhile, matrices are denoted by boldface
uppercase letter(e.g. W). Given a matrix W 2 Rm⇥n, we write its i-th row, j-th column and (i, j)
element as Wi,:, W;,j ,and Wi,j respectively. The matrix (↵,�) norm is written as kWk↵,� . In the
following sections, we would adopt the notion of vector-induced norm upon mentioning (↵,�)

norm of a given matrix W; namely, we have kWk↵,� = maxx 6=0
kWxk↵
kxk�

. We may use the shorthand
notation k·kp := k·kp,p. Furthermore, we use the notion of B1

W (✏) to express an element-wise `1
norm ball for both matrix and vector. Specifically, given a matrix W 2 Rm⇥n and vector x 2 Rn,
we could define the norm ball as B1

W (✏) := {Ŵ | |Ŵi,j � Wi,j |  ✏, 8i 2 [m], j 2 [n]} and
B1

x (✏) := {x̂ | |[x̂]j � [x]j |  ✏, 8j 2 [n]}.

Preliminary We study K-class classification problem and consider an input vector x 2 Rd

and an L-layer neural network defined as fW (x) = WL⇢(WL�1...⇢(W1x)) 2 RK with
W being the set containing all weight matrices (i.e. W := {Wi | 8i 2 [L]} while ⇢(·)
stands for non-negative monotone activation functions and are assumed 1-Lipschitz. More-
over, the i-th component of neural network’s output is written as [fW (x)]i and the pairwise
margin is denoted as f ij

W (x) := [fW (x)]i � [fW (x)]j . The output of k-th (k 2 [L � 1])
layer given a certain set of matrices W under both unperturbed and input-perturbed setting is
zkW := ⇢(Wk...⇢(W1x)),Wm 2 W , 8m 2 [k] and ẑkW := ⇢(Wk...⇢(W1x̂)) where x̂ 2 B1

x (✏x).
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3.2 MAIN THEOREM AND RESULTS

Theorem 1 (all-layer and input joint perturbation) Let fW (x) = WL⇢(..⇢(W1x)...) denotes an
L-layer neural network and let fcW (x̂) = Ŵ

L
⇢(..⇢(Ŵ

1
x̂)...) with Ŵ

m 2 B1
Wm(✏m), 8m 2 [L] and

x̂ 2 B1
x (✏x), furthermore, let ⇠ be the set containing possible perturbations, i.e. ⇠ := ✏x [{✏m}Lm=1

and dm representing the dimension of matrix Wm’s row vector, then for any set of pairwise margin
bound between natural and joint perturbed settings, we have

f ij
cW
(x̂)  f ij

W (x) + ⌧ ijW (⇠) + ⇣ijW (x, ⇠) (1)

where ⌧ ijW (⇠) can be expressed as

⌧ ijW (⇠) = ✏x

✓��WL
i,: �WL

j,:

��
1
+ 2dL✏L

◆
⇧L�1

m=1(kWmk1 + dm✏m) (2)

while ⇣ijW (x, ⇠) possesses the following form

⇣ijW (x, ⇠) :=
��WL

i,: �WL
j,:

��
1

⇢
✏1 kxk1 ⇧

L�2
l=1

��(WL�l)
��
1

+
L�3X

k=1

�
⇧L�1

m=k+2 kWmk1
�
✏k+1

���hk⇤
���
1
+ ✏L�1

���hL�2⇤
���
1

�
+ 2✏L

���hL�1⇤
���
1

where hk⇤
= ⇢(Wk⇤

...⇢(W1⇤x)

with

(
Wm⇤

i,j = Wm
i,j + ✏m, 8i, j and 8m 2 [L] \ {1}

W 1⇤
i,j = W 1

i,j + sgn([x]j) ✏1, 8i, j
(3)

Proof : Please see Appendix A.1
One could inspect that in equation (1), the term ⇣ijW (x, ⇠) stands for the worst-case error when we
consider weight perturbation. Secondly, the second term ⌧ ijW (⇠) represents the error induced by
input perturbation when weight perturbation is taken into presumptions of the models.

3.3 THEORY-INSPIRED LOSS TOWARDS NON-SINGULAR ROBUSTNESS

With our theoretical insights on margin bound, we proceed to construct a new regularization function
towards training a non-singular adversarial robust neural network. Specifically, consider the new loss
function in the following form:

`0(fW (x), y) = `cls(fW (x), y) + ↵max
y0 6=y

{⌧y
0y

W (⇠)}+ �max
y0 6=y

{⇣y
0y

W (x, ⇠)} (4)

In the above equation, the classification loss function is accompanied with two extra regularizers
which can improve model robustness in both input and parameter spaces.

4 EXPERIMENTS

In this section, we conduct experiments to demonstrate the performance of singular and non-singular
models. The detail of experiment setup sees in Appendix A.2. For comparison, five different training
methods using the training loss in (4) are presented in our experiments: (i) Standard Model, (ii)
Weight Perturb, (iii) Adversarial Training (AT) Madry et al. (2018), (iv) Adversarial Training with
additional �-term regularizaiton (AT+�), and (v) Joint Input-Weight Perturb (JIWP).

4.1 PERFORMANCE EVALUATION
For non-singular robustness evaluation, we generalize the projected gradient descent (PGD) attack
Madry et al. (2018) for input perturbation to joint input-weight perturbation, by simultaneously
computing the signed gradient of the CE loss with respect to the data input and the model weight,
clipping the perturbation within their respective `1 ball constraints, and iterate this process for
100 steps with step sizes ↵X = 0.01 and ↵W = 0.0005. We describe this joint PGD attack as
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(a) Standard Model (AUC=12.18) (b) Weight Perturb (AUC=15.07) (c) AT (AUC=20.37)

(d) AT+�-1 (AUC=21.51) (e) AT+�-2 (AUC=25.23) (f) JIWP (AUC=17.74)
Figure 1: Comparison of test accuracy contour of neural networks under joint input-weight PGD
attack (100 steps) with varying input (✏x) and weight (✏w) perturbation levels. AUC refers to the
area under curve scores. Comparing to the the standard model (a), singular robust models (b) and
(c) have comparable or even worse robustness under their respective untrained perturbation type.
Non-singular robust models using our proposed regularization function, including (d), (e) and (f),
show significantly better AUC scores.

follows. Given an input X and a trained neural network weight W , the perturbed weight fW and
input fX are crafted by iterative gradient ascent using the sign of gradient of the CE loss marked as
sgn(rW,X`cls(ffW (fX), y)). The attack iteration with step sizes ↵W of weight and ↵X of input is
formalized as fW

(0)
= W , fW

(t+1)
= ClipW ,✏w

n
fW

(t)
+ ↵W sgn(rW,X`cls(ffW (t)(fX

(t)
), y))

o
and

fX
(0)

= X, fX
(t+1)

= ClipX,✏x

n
fX

(t)
+ ↵X sgn(rW,X`cls(ffW (t)(fX

(t)
), y))

o
.

Fig.1 demonstrates the non-singular robustness performance for each model. The standard model
(a) is vulnerable to both weight and input perturbations. Singular robust models (b) and (c) are only
robust to the seen perturbation type, while they only have comparable or even worse robustness
against unseen perturbation type. For example, AT (model (c)) is only trained on input perturbation
and is observed to be less robust under weight perturbation compared to the standard model (a).
Similarly, the robustness of weight perturb model (b) to input perturbation is only slightly better than
the standard model. The results suggest the insufficiency of singular robustness analysis. Comparing
the area under curve (AUC) score of test accuracy, non-singular robust models (bottom row, (d)-(f))
using our proposed loss significantly outperform standard and singular robust models (top row). The
AUC of best AT+� model (e) improves that of AT by about 24%, validating the effectiveness of our
proposed regularizer. AT+� also attains better AUC than JIWP, suggesting that min-max training is
crucial to non-singular robustness.

5 CONCLUSION

In this paper, we analyze the robustness of pairwise class margin for neural networks against joint
input-weight perturbations. A theory-inspired regularizer is proposed towards training comprehen-
sive robust neural networks. Empirical results against joint input-weight perturbations show that
singular robust models can give a false sense of overall robustness, while our proposal can signifi-
cantly improve non-singular adversarial robustness and offer thorough evaluation.
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