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ABSTRACT

This paper proposes Characteristic Examples for effectively fingerprinting deep
neural networks, featuring high-robustness to the base model against model prun-
ing as well as low-transferability to unassociated models. This is the first work
taking both robustness and transferability into consideration for generating realis-
tic fingerprints, whereas current methods lack practical assumptions and may incur
large false positive rates. To achieve better trade-off between robustness and trans-
ferability, we propose three kinds of characteristic examples: vanilla C-examples,
RC-examples, and LTRC-example, to derive fingerprints from the original base
model. To fairly characterize the trade-off between robustness and transferability,
we propose Uniqueness Score, a comprehensive metric that measures the differ-
ence between robustness and transferability, which also serves as an indicator to
the false alarm problem.

1 INTRODUCTION

Tremendous efforts have been spent on developing state-of-the-art machine learning models e.g.,
deep neural networks (DNNs). For instance, the cost of training current state-of-the-art transformer
based language model, GPT-3 Brown & et al. (2020), is estimated to be at least 4.6 million US
dollars1. Imagine an unethical model thief purposely pruned the pre-trained GPT-3 model and at-
tempted to claim the ownership of the resulting compressed model. We need to answer the question
of “how to protect intellectual property for DNN models and reliably identify model ownership?”

Another motivating example is the surging trend of broad usage of neural network models across
applications in cloud-based or embedded systems. For model owners deploying a model on the
cloud, it is essential for them to verify the identity of the model to make sure that the model has not
been tampered or replaced. However, most of these current methods for DNN IP protection require
intervention in training phase, which may cause performance degradation of the DNN (i.e., accuracy
drop) and leave hidden danger of adversary to attack the DNN (i.e., backdoor attacks). Meanwhile,
existing works often overlook the false positive problem of the DNN (i.e., mistakenly claiming the
ownership of irrelevant models), which is of practical importance when designing fingerprints.

To better address the aforementioned limitations, this work proposes a novel approach to fingerprint-
ing DNNs using Characteristic Examples (C-examples). Its advantages lies in that (i) its generation
process does not intervene with the training phase; and (ii) it does not require any realistic data from
the training/testing set. By applying uniform random noise to the weights of the neural network
with the combination of gradient mean descending technique, the proposed C-examples achieve
high-robustness to the resulting models pruned from the base model where the fingerprints are ex-
tracted. When further equipped with a high-pass filter in the frequency domain of image data during
the generation process, C-examples attain low-transferability to other models that are different from
the base model. Extensive experiments demonstrate that the proposed characteristic examples can
achieve superior performance when compared with existing fingerprinting methods. In particular,
for VGG ImageNet models, using LTRC-examples gives 4× higher uniqueness score than the base-
line method and does not incur any false positives.

1https://bdtechtalks.com/2020/08/17/openai-gpt-3-commercial-ai
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Figure 1: Characteristic Examples Visualized using Different Generation Process. The label
assigned to all these image is “strawberry”.

2 CHARACTERISTIC EXAMPLES FOR NEURAL NETWORK FINGERPRINTING

Our fingerprinting methods are introduced in the context of image classification task by DNNs. We
consider three types of DNN models that are of interest in C-examples. 1© Base Model: the pre-
trained model to fulfill some designated task, such as image classification. 2© Pruned Models: the
models pruned from the base model and implemented on the edge devices for inference execution.
3© Other Models: any other models that are neither 1© nor 2©. Our goal is to design C-examples

that are both robust to 2© Pruned Models and exhibiting low-transferability on 3© Other Models.

2.1 PROPOSED C-EXAMPLES

Let x ∈ R3×H×W denote a colored RGB image, where the pixel values of x are scaled to [0, 1]
for mathematical simplicity. Fθ denotes the pre-trained Base Model, which outputs y = Fθ(x) as
a probability distribution for a total of M classes. The element yi represents the probability that an
input x belongs to the i-th class. If we are given with a subset {l1, l2, . . . , lP } of P labels randomly
chosen from the labels of training dataset, then a set of η-optimal (η set to 1× 10−6 to guarantee the
convergence) RC-examples X∗ can be characterized as:

X∗ =
{
(x, l)

∣∣Lossθ(x, l) < η,x ∈ [0, 1]n
}
. (1)

The Lossθ(·) denotes the loss function of Fθ. A C-example x minimizing the loss for a specified
label l should satisfy the above constraint. We use a random seed to generate a C-example, where a
vanilla version C-example is shown in Figure 1 (a).

We choose to use the projected gradient decent (PGD) algorithm Lin (2007); Kurakin et al. (2017;
2016); Madry et al. (2018), which has been widely used as a general approach for solving con-
strained optimization problems. Then the C-example generation problem (1) can be solved as:

xt+1 = Clip
(
xt − α · sign(∇xLossθ(xt, l))

)
, (2)

where t is the iteration step index; x0 is the random starting point; α is the step size; sign(·) returns
the element-wise sign of a vector; ∇x(·) calculates gradients; and Clip(·) denotes the clipping
operation to satisfy the x ∈ [0, 1]n constraint. In summary, the PGD algorithm generates a C-
example by iteratively making updates based on the gradients and then clipping into the `∞-ball.

2.2 C-EXAMPLES WITH ENHANCED ROBUSTNESS

One of the major limitations of existing works Le Merrer et al. (2019); He et al. (2019) (detailed in
Appendix A.1) for fingerprinting or watermarking DNNs is that they can not differentiate the (be-
nign) model compression. Here, we tackle this challenge by improving the robustness of C-examples
on 2© Pruned Models by Robust C-examples (RC-examples), by adding noise bounded by δ to the
neural network parameter θ to mimic the model perturbation due to the model compression. Here
the loss is changed to Lossθ+∆, where ∆ presents the uniformly distributed weight perturbations
within [−δ, δ].
Further Robustness Enhancement with Gradient Mean (GM). Furthermore, motivated by the Ex-
pectation Over Transformation (EOT) method Athalye et al. (2018) towards stronger adversarial
attacks, the proposed RC-examples can be further enhanced by calculating the mean of the input
gradients in each iteration step. When computing input gradient, we sample input gradients for
q = 10 times and use the mean of gradients in each iteration step of generating RC-examples.
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Figure 2: (a) Saliency map of three color channels averaged over 1000 images from ImageNet
demonstrating the absolute gradients of the base model classification loss w.r.t. the frequencies
obtained from the DCT of input images. (b) A system diagram of generating LTRC-example.

2.3 RC-EXAMPLES WITH LOW-TRANSFERABILITY

We further improve the RC-examples proposed in Section 2.2 by enforcing low-transferability to
3© Other Models, i.e., we propose the Low-Transferability RC-examples (LTRC-examples). In

this way, we can improve the capability of C-examples in detection for false positive cases, where
positive means claiming the model ownership as ours in IP protection. Specifically, we apply a
frequency mask on the Discrete Cosine Transform (DCT) Rao & Yip (2014) to implement a high-
pass filter in the frequency domain of the C-example, detailed in Appendix A.2 .

For most images, we found that the low-frequency components are mostly salient for deep learning
classifiers. As shown in Figure 2(a), the low-frequency components in the red area around (0,0) have
a larger contribution (with larger gradients) to the classification loss. Inspired by this phenomenon,
we believe that filtering out these components can effectively lower the fingerprints transferability.
To demonstrate this, we design the high-pass frequency mask as shown in Figure 2(b), where the
high-frequency band size k controls the range of the filtered low-frequency components.

By using the high-pass frequency mask, the LTRC-example at the (t + 1)-th iteration step can be
derived by:

xt+1 = HighPass
{

Clip
(
xt − α · sign(∇xLossθ+∆(xt, l))

)}
, (3)

where the HighPass filter is defined as:

HighPass(·) = IDCT(FrequencyMask(DCT(·))). (4)

3 PERFORMANCE EVALUATION

The implementation details and comparative methods for our experiments are summarized in Ap-
pendix A.3 and A.4. In our experiment, we use the accuracy of the C-examples on the 2© Pruned
Model to indicate its robustness and the accuracy on the 3©Other Model to indicate its transferabilty.
To evaluate the trade-off between robustness of the pruned models and transferability to other vari-
ant models, we define the difference between the robustness and transferability as Uniqueness Score
(Uniqueness Score = Robustness − Transferability), where higher Uniqueness Score represents
more robustness to pruned models and less transferability to variant models. We demonstrate the ef-
fectiveness of proposed methods on different pruned models for evaluating robustness and VGG-19
(worst-case transferability to VGG-16) for testing transferability.

Figure 3: Visualization of the Trade-off Curve between Transferability and Robustness. Base
Model is Pruned with 40%, 60%, and 80% Pruning Ratios.

We plot and visualize the trade-off curve between robustness to the pruned models and transferability
to variant models in Figure 3, and Table 1 further summarizes the corresponding Uniqueness Score
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with respect to each method. For better comparison, we only take our best choice of k = 20. We
summarize our findings from experiments as follows:

1 For evaluating the trade-off between robustness and transferability, as shown in Figure 3, both
RC-examples, RC-examples+GM, and LTRC-examples clearly outperforms the baseline vanilla
C-examples as fingerprinting methods. By comparing RC-examples and RC-examples+GM,
applying GM to the input gradients can significantly help with the fingerprinting performance
on both robustness and transferability. The proposed LTRC-examples clearly outperforms C-
examples, RC-examples, and RC-examples+GM for all pruned models, as LTRC-example applies
both random perturbations to the weights and high-pass filters to remove the high-transferable
low-frequency components during generation.

2 As shown in Table 1, uniqueness scores of RC-examples, RC-examples+GM, and LTRC-
examples are higher than that of the baseline vanilla C-examples. We notice that C-examples
suffer from negative uniqueness scores due to their high transferability to other models when the
pruning ratios are 70% and 80%. We can observe that LTRC-examples with δ = 0.001 achieve
the best uniqueness scores with relatively large margins (about 1.9X, 2.1X, and 5X that of the
RC-examples+GM, RC-examples, and C-examples).

3 In general, for a given method with fixed δ, the uniqueness score decreases if the pruning ratio
increases since larger pruning ratio degrades the test accuracy, leading to weaker model function-
alities with less robustness after pruning. Meanwhile, we observe that with increasing δ, there
are more uncertainty in the model with larger random perturbations, leading to more general C-
examples to incorporate larger uncertainty. Thus they become more transferable to other variant
models, resulting in increasing transferability and decreasing uniqueness score. For example, for
LTRC-examples with δ = 0.001, with 40% pruned model, the uniqueness score is 65 while it
becomes 2 with δ = 0.007.

Table 1: Uniqueness Score of C-examples on Implemented Models by Different Weight Prun-
ing on the Base VGG-16 model with ImageNet Dataset: The base model has 70.85% top 1
accuracy and 90.10% top 5 accuracy. The base model is pruned by unstructured pruning Han et al.
(2015) with various pruning ratio, where it is pruned for 5 times at each pruning ratio with average
accuracy degradation for pruning ratio 40% to 80% are 0.26%, 0.45%, 0.38%, 0.61%, and 0.97%,
respectively. We choose one representative setting for LTRC-examples with k = 20. The robustness
at each pruning ratio can be obtained by the summation of Uniqueness Score and transferability.

Method δ
Base Model Transferability Uniqueness Score (%)

VGG-16 (%) to VGG-19 (%) 40% Pruned 50% Pruned 60% Pruned 70% Pruned 80% Pruned
Vanilla C-Example 0 100 47 +13 +13 +13 -5 -22

RC-Example

0.001 100 60 +30 +30 +23 +22 +0
0.003 100 88 +6 +11 +5 +2 -3
0.005 100 86 +12 +12 +12 +9 +2
0.007 100 95 +4 +4 +3 +2 +3

RC-Example+GM

0.001 100 55 +34 +37 +35 +23 -7
0.003 100 67 +30 +38 +38 +21 +19
0.005 100 85 +15 +15 +15 +15 +15
0.007 100 100 +0 +0 +0 +0 +0

LTRC-Example

0 100 16 +53 +51 +50 +23 +13
0.001 100 24 +65 +65 +65 +58 +32
0.003 100 75 +25 +25 +25 +25 +23
0.005 100 96 +4 +4 +4 +4 +3
0.007 100 98 +2 +2 +2 +2 +2

The experiment is evaluated on 100 C-examples generated from VGG-16.

4 CONCLUSION

Towards achieving high-robustness and low-transferability for fingerprinting DNNs, we design three
kinds of characteristic examples with increasing performance by applying random noise to the
model parameters and using a high-pass filter to remove low-frequency components. To fairly
characterize the trade-off between robustness and transferability, we propose an evaluation met-
ric named Uniqueness Score. Extensive experiments demonstrate that the proposed methods have
superior performance in achieving high-robustness and low-transferability than current watermark-
ing/fingerprinting methods.
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A APPENDIX

A.1 BACKGROUND AND RELATED WORK

DNN watermarking / fingerprinting methods for the DNN intellectual property protection and model
integrity verification can be classified as two main categories: (1) DNN watermarking or fingerprint-
ing by weights embedding; (2) Watermarking or fingerprinting using image samples.

DNN watermarking following the first approach embeds watermarks into the model weight parame-
ters which requires white-box access to the model to be tested. Towards this approach, Uchida et al.
takes the first step to investigate the DNN watermarking by embedding a watermark in model weight
parameters, using a parameter regularizer Uchida et al. (2017). Later on Rouhani et al. propose an
IP protection framework that enables the insertion of digital watermarks in the target DNN model
before distributing the model Darvish Rouhani et al. (2019). Other works proposed by Chen et al.
Chen et al. (2019) and Fan et al. Fan & et al. (2019) also contribute towards this approach.

The second approach extracts the watermarks by using a set of image samples. This line of work
includes watermarking by using DNN backdoor attacks Gu et al. (2017) to embed watermarks into
the DNN model representation while using trigger images to test intellectual property infringement
Adi et al. (2018); Guo & Potkonjak (2018); Namba & Sakuma (2019). Another direction is to
extracts adversarial examples Le Merrer et al. (2019); Lukas et al. (2019) or sensitive examples He
et al. (2019) from a DNN as its fingerprints.

A.2 FREQUENCY ANALYSIS

The frequency analysis Guo et al. (2018); Sharma et al. (2019); Cheng et al. (2019) suggests that
low frequency components can improve transferability of adversarial examples. Inspired by that,
we propose to leverage high frequency components to achieve C-examples with low-transferability.
Specifically, we apply a frequency mask on the Discrete Cosine Transform (DCT) Rao & Yip (2014)
to implement a high-pass filter in the frequency domain of the C-example.

As an important tool in signal processing, the DCT decomposes a given signal into cosine functions
oscillating at different frequencies and amplitudes. For a 2D image, the DCT performed as ω =
DCT(x) can transform the image x into the frequency domain, and ω(i,j) is the magnitude of its
corresponding cosine functions with the values of i and j representing frequencies, where smaller
values mean lower frequencies. The DCT is invertible, and the Inverse DCT (IDCT) is denoted as
x = IDCT(ω). Note that here we apply DCT and IDCT for different color channels independently.

For most ImageNet images, we found that the low-frequency components are mostly salient for
deep learning classifiers. As shown in Figure 2, the low-frequency components in the red area
around (0,0) have a larger contribution (with larger gradients) to the classification loss. Inspired by
this phenomenon that the low-frequencies play a more important role in classifications and therefore
are more transferable, we believe that filtering out these components can effectively lower the fin-
gerprints transferability. To demonstrate this, we design the high-pass frequency mask as shown in
Figure 2(b), where the high-frequency band size k controls the range of the filtered low-frequency
components. The frequency mask is designed to be a 2D matrix with elements being either 0 or 1,
i.e., m ∈ {0, 1}H×W which performs element-wise product with the DCT of C-example. At each
iteration step to generate the fingerprints, the high-pass mask sets the low-frequency components
to 0, i.e., ω(i,j) = 0 if 1 ≤ i + j ≤ k, while keeping the rest of the high-frequency components.
On ImageNet dataset with mask size H = W = 224 (H = W = 32 for CIFAR-10 dataset), the
high-frequency band size k = 20 leads to 1

2 × 202/2242 ≈ 0.4% of the frequency components set
to 0.

A.3 IMPLEMENTATION DETAILS

The experiments are conducted on machines with 8 NVIDIA GTX 1080 TI GPUs. We adopt the
widely used public image datasets and models in the literature, including CNN model for CIFAR-10
Krizhevsky et al. (2009) and VGG-16 Simonyan & Zisserman (ICLR 2015) model for ImageNet
Deng et al. (2009) datasets, respectively. Results on CIFAR-10 dataset are summarized in Table 2
and detailed in AppendixA.5.
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Unless specified, the same set of hyper-parameters is used for generating C-examples on the same
dataset in our experiments. To control the trade-off between robustness and transferability, we set
the weight perturbation bound δ to 0.001, 0.003, 0.005, 0.007 separately for ImageNet dataset and
0.01, 0.03, 0.05, 0.07 for CIFAR-10 dataset. For each C-examples generation method, 100 C-
examples are generated (with randomly picked target labels) with a total of 500 iteration steps (i.e.,
t = 0, 1, ..., 499 as in Eq. (2)). We visualize the generated C-examples on ImageNet dataset in
Figure 1.

In our experiment, we use the accuracy of the C-examples on the pruned model to indicate its
robustness and the accuracy on the variant model (with similar functionality to the base model,
e.g. VGG-19 model to the base VGG-16 model) to indicate its transferabilty. Originally, the ac-
curacy of all kinds of C-examples on the base model is 100% during generation. To effectively
evaluate the trade-off between robustness of the pruned models and transferability to other variant
models, we define the difference between the robustness and transferability as Uniqueness Score
(Uniqueness Score = Robustness − Transferability), where higher Uniqueness Score means the
C-examples are more robust to pruned models and less transferable to variant models. Intuitively,
a better fingerprint method should achieve higher uniqueness score. Uniqueness Score can also be
used to indicate the false positive problem, i.e., if Uniqueness Score is negative, the corresponding
fingerprint method is prone to make false model claims.

A.4 COMPARATIVE METHODS

There are two works that are most relevant to our paper. Le Merrer et al. (2019) extracts adversarial
examples to watermark neural networks. Their experiment was conducted on MNIST dataset Le-
Cun et al. (1998) which only contains binary images of handwritten digits. Although, the method
in Le Merrer et al. (2019) is similar to our vanilla C-examples, we highlight that we use random
initialization instead of true data and therefore our method is data-free. In our experiments, we re-
port the performance of the vanilla C-examples as a baseline rather than the watermarking method
Le Merrer et al. (2019) due to their similarity. Another work proposes sensitive examples He et al.
(2019) from a DNN as its fingerprints. Similar to Le Merrer et al. (2019), its fingerprinting also
relies on adversarial examples. This paper regards all the pruned models as compression attack and
reject the pruned models even the test accuracy degradation after pruning is minor (e.g., 0.65%).
Different from He et al. (2019), we believe that an effective fingerprinting method should be robust
to pruned models and recognize pruned models as non-attack. To demonstrate the robustness prob-
lem of He et al. (2019), we use pruned models to evaluate the robustness of sensitive examples. With
8 sensitive samples, the Robustness (i.e., accuracy on pruned models) is only 0.04%, demonstrating
that pruning is treated as illegitimate by sensitive samples, which is unreasonable due to the wide
application of DNN pruning for size reduction and inference acceleration especially on edge devices
with limited resources.

A.5 EXPERIMENT RESULTS ON CIFAR-10 DATASET

We use a CNN model (referred as CNN-1) to generate C-examples from CIFAR-10 dataset. The
CNN-1 model has 13 convolutinal layers and 3 fully-connected layers and can achieve an accuracy
of 80.5% on test set. To test the transferability, we apply 20 variant CNN models with an average
accuracy of 80.4% on the test set. They share the same model architecture as the base CNN-1 model
but are trained from different random initialized weights. We summarize the experimental results
for C-examples on CIFAR-10 dataset in Table 2. We observe that LTRC-examples with k = 2 and
δ = 0.03 achieve the best uniqueness scores than other methods.
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Table 2: Uniqueness Score of C-examples on Implemented Models by Different Weight Pruning
Methods on the Base model CNN-1 with CIFAR-10 Dataset: The base model has 80.5% accuracy
on test set. The base model is pruned by unstructured pruning Han et al. (2015) with various pruning
ratio, where it is pruned for 5 times at each pruning ratio and the average accuracy degradation for
pruning ratio 80%, 90%, and 95% are 0.2%, 0.2%, and 0.8%, respectively. Here we use an optimal
setting for LTRC-examples with k = 1, 2, 3. The robustness at each pruning ratio is reported by the
summation of Uniqueness Score and the averaged accuracy of 20 variant CNN models representing
the transferability of each group of C-examples.

Method δ
Base Model Transferability to Uniqueness Score (%)
CNN-1 (%) Variant CNNs (%) 80% Pruned 90% Pruned 95% Pruned

Vanilla C-Example 0 100 68 +17 +5 -30

RC-Example

0.01 100 74 +26 +18 -5
0.03 100 78 +22 +16 +2
0.05 100 94 +6 +6 +3
0.07 100 96 +4 +4 +2

LTRC-Example
(k = 1)

0 100 59 +39 +20 -5
0.01 100 64 +35 +18 -9
0.03 100 78 +21 +15 +1
0.05 100 80 +11 +6 -9
0.07 100 83 +10 +5 -3

LTRC-Example
(k = 2)

0 100 28 +42 + 40 +35
0.01 100 31 +48 +44 +38
0.03 100 51 +49 +48 +43
0.05 100 61 +39 +36 +35
0.07 100 69 +31 +31 +30

LTRC-Example
(k = 3)

0 100 36 +20 +19 +15
0.01 100 39 +25 +21 +17
0.03 100 60 +15 +13 +9
0.05 100 71 +13 +9 +4
0.07 100 75 +12 +9 -3

The experiment is evaluated on 100 examples generated from base model CNN-1.
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