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ABSTRACT

Adversarial robustness is an open challenge in deep learning, most often tackled
using adversarial training. Adversarial training is computationally costly, involving
alternated optimization with a trade-off between standard generalization and adver-
sarial robustness. We explore training robust models without adversarial training by
revisiting a known result linking maximally robust classifiers and minimum norm
solutions, and combining it with recent results on the implicit bias of optimizers.
First, we show that, under certain conditions, it is possible to achieve both perfect
standard accuracy and a certain degree of robustness without a trade-off, simply
by training an overparametrized model using the implicit bias of the optimization.
In that regime, there is a direct relationship between the type of the optimizer and
the attack to which the model is robust. Second, we investigate the role of the
architecture in designing robust models. In particular, we characterize the robust-
ness of linear convolutional models, showing that they resist attacks subject to a
constraint on the Fourier-`∞ norm. This result explains the property of `p-bounded
adversarial perturbations that tend to be concentrated in Fourier space. This leads
us to a novel attack in the Fourier domain that is inspired by the well-known
frequency-dependent sensitivity of human perception. We evaluate Fourier-`∞ ro-
bustness of recent CIFAR-10 models with robust training and visualize adversarial
perturbations.

1 PRELIMINARIES

Let {(xi, yi)}ni=1 denote a training dataset sampled I.I.D. from the distribution D, where xi ∈ Rd
are features and yi ∈ {−1,+1} are binary labels. A binary classifier is a function ϕ : Rd → R,
and its prediction on an input x is given by sign(ϕ(x)) ∈ {−1,+1}. The aim in supervised
learning is to find a classifier that accurately classifies the training data and generalizes to unseen
test data. One standard framework for training a classifier is Empirical Risk Minimization (ERM),
arg minϕ∈Φ L(ϕ), L(ϕ) := E(x,y)∼D ζ(yϕ(x)) where Φ is a family of classifiers and ζ : R→ R+

is a loss function that we assume to be strictly monotonically decreasing to 0, i.e., ζ ′ < 0. Examples
are the exponential loss, exp (−ŷy), and the logistic loss, log (1 + exp (−ŷy)).

Given a classifier, an adversarial perturbation δ ∈ Rd is any small perturbation that changes the
model prediction, i.e., sign(ϕ(x+ δ)) 6= sign(ϕ(x)), ‖δ‖ ≤ ε, where ‖ · ‖ is a norm on Rd, and ε is
an arbitrarily chosen constant. In practice, an adversarial perturbation, δ, is found as an approximate
solution to the optimization problem maxδ:‖δ‖≤ε ζ(yϕ(x + δ)). Madry et al. (2017) defined an
adversarially robust classifier as the solution to the saddle-point optimization problem,

arg min
ϕ∈Φ

E(x,y)∼D max
δ:‖δ‖≤ε

ζ(yϕ(x+ δ)) . (1)

Adversarial Training (Goodfellow et al., 2014) refers to solving (1) using an alternated optimization
that is computationally expensive because it often requires solving the inner maximization many
times.
∗Work done during an internship at Google Research. Code available at: https://github.com/

fartashf/robust_bias. Correspondence to: Fartash Faghri <faghri@cs.toronto.edu>.
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The main drawback of defining the adversarially robust classifier using (1), and a drawback of
adversarial training, is that the parameter ε needs to be known or tuned. The choice of ε controls a
trade-off between standard accuracy on samples of the distribution D versus the robust accuracy, i.e.,
the accuracy on adversarial samples.

2 MAXIMALLY ROBUST CLASSIFIER

In order to avoid the trade-off imposed by ε in adversarial robustness and reduce computational load
of finding a desirable ε, we revisit a definition from robust optimization. Appendix B discusses
additional details of this section. Proofs are provided in Appendix E.
Definition 2.1. A Maximally Robust Classifier (Ben-Tal et al., 2009) is a solution to

arg max
ϕ∈Φ

{ε | yiϕ(xi + δ) > 0, ‖δ‖ ≤ ε, ∀i} . (2)

Compared with the saddle-point formulation (1), ε in (2) is not an arbitrary constant. Rather, it is
maximized as part of the optimization problem. Moreover, the maximal ε in this definition does not
depend on a particular loss function. Note, a maximally robust classifier is not necessarily unique.

The downside of this formulation is that it requires the training data to be separable so that (2) is
non-empty, i.e. there exists ϕ ∈ Φ such that ∀i, yiϕ(xi) > 0. In most deep learning settings, this is
not necessarily a concern as models are large enough that they can interpolate the training data, i.e.
for any dataset there exists ϕ such that ϕ(xi) = yi.

Given a dataset and a norm for the perturbation, what is the maximally robust linear classifier? Here,
we revisit a result from Ben-Tal et al. (2009) for classification. Let ‖ · ‖ be a norm on Rn. The
associated dual norm, denoted ‖ · ‖∗, is defined as ‖δ‖∗ = supx{|〈δ,x〉| | ‖x‖ ≤ 1}.
Lemma 2.1 Maximally Robust Linear Classifier (Ben-Tal et al. (2009), §12). For linear models
and linearly separable data, the following problems are equivalent; i.e., from a solution of one, a
solution of the other is readily found.

Maximally robust classifier: arg max
w,b

{ε | yi(w>(xi + δ) + b) > 0, ‖δ‖ ≤ ε, ∀i} (3)

Maximum margin classifier: arg max
w,b:‖w‖∗≤1

{ε | yi(w>xi + b) ≥ ε, ∀i} (4)

Minimum norm classifier: arg min
w,b

{‖w‖∗ | yi(w>xi + b) ≥ 1, ∀i} . (5)

We provide a proof for general norms based on Ben-Tal et al. (2009) in Appendix E.1.

3 IMPLICIT ROBUSTNESS OF OPTIMIZERS

In this section, we use recent results on the implicit bias of optimizers combined with Lemma 2.1 to
characterize the robustness of overparametrized models. The most common approach to empirical risk
minimization is through a gradient-based optimizer. Gunasekar et al. (2018a) showed that gradient
descent, and more generally steepest descent methods, have an implicit bias towards minimum norm
solutions. Even though there exist infinitely many solutions that minimize the empirical risk, we can
characterize the one found by steepest descent. Using Lemma 2.1, we show that such a classifier is
also maximally robust w.r.t. a specific norm. Appendix C discusses additional details of this section.
Proofs are provided in Appendix E.
Corollary 1 Implicit Robustness of Steepest Descent. For any linearly separable dataset
and any norm ‖ · ‖, steepest descent iterates minimizing the empirical risk, L(w) , satis-
fying the conditions of Theorem C.1, converge in direction to a maximally robust classifier,
arg maxw{ε | yiw>(xi + δ) > 0, ‖δ‖∗ ≤ ε, ∀i}. In particular, a maximally robust classifier
against `1, `2, and `∞ is reached, respectively, by sign gradient descent, gradient descent, and
coordinate descent.

Corollary 1 implies that overparametrized linear models are maximally robust classifiers, without the
additional cost of adversarial training. One could also obtain an alternative robustness guarantee with
the appropriate choice of optimization method.
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Figure 1: Adversarial attacks (`∞ and Fourier-`∞) against CIFAR-10 classification models.
Fourier-`∞ perturbations in the spatial domain are concentrated around subtle details of the object.
In contrast, `∞ perturbations are perceived by people as noise. The magnitude of Fourier-`∞
perturbations at almost all frequencies is equal to ε except for a few frequencies that appear as small
light colored dots in the mostly grey perturbation (darker means stronger perturbation). We use
ε = 8/255. Amplitude spectra are displayed with the origin at the center of the image.

Next, we show that even for linear models, the choice of the architecture affects implicit robustness,
which gives another alternative for achieving maximal robustness. We use a generalization of
Theorem C.1 to linear convolutional models. To extend Corollary 1 to deep learning models one
can use generalizations of Theorem C.1. For the special case of gradient descent, Theorem C.1
has been generalized to multi-layer fully-connected linear networks and a larger family of strictly
monotonically decreasing loss functions including the logistic loss (Nacson et al., 2019, Theorem 2).
Corollary 2 Maximally Robust to Perturbations with Bounded Fourier Coefficients. Con-
sider the family of two-layer linear convolutional networks and the gradient descent iter-
ates, wt, minimizing the empirical risk. For almost all linearly separable datasets un-
der conditions of Theorem C.2, wt converges in direction to a maximally robust classifier,
arg maxw1,...,wL

{ε | yiϕconv(xi; {wl}Ll=1) > 0, ‖F(δ)‖∞ ≤ ε, ∀i}, where F denotes the Discrete
Fourier Transform (DFT).

Model Norm Standard Fourier-`∞
WideResNet-28-10 - 94.78 23.40

Wu et al. (2020) `∞ 88.25 82.33
Carmon et al. (2019) `∞ 89.69 83.86

Wu et al. (2020) `2 88.51 84.17
Augustin et al. (2020) `2 91.08 86.84

Figure 2: Standard and Fourier-`∞ accuracy for CIFAR-
10 models. Fourier-`∞ uses ε = 8/255 which is beyond the
maximal ε for any of the models. Beyond the maximal ε,
there is no guarantee for robustness. Yet, standard training
has non-zero accuracy against this attack which shows a
degree of robustness. Models with robust training reach
an accuracy higher than standard training which suggests
the implicit bias of non-linear convolutional networks is not
exactly Fourier-`∞. (The Norm column specifies the norm
used for robust training.)

Corollary 2 implies that, at no addi-
tional cost, linear convolutional mod-
els are already maximally robust, but
w.r.t. perturbations in the Fourier do-
main. As our visualizations in Fig. 1
show, adversarial perturbations under
bounded Fourier-`∞ are more concen-
trated on subtle details of the main
object. Appendix I depicts the vari-
ous norm-balls in 3D to illustrate the
significant geometrical difference be-
tween the Fourier-`∞ and other com-
monly used norm-balls for adversarial
robustness. The robustness to Fourier-
`∞ can justify standard generalization
of convolutional models.

These results further imply that to fool a linear convolutional network, any adversarial perturbation
must have at least one frequency beyond the maximal robustness of the model. This condition
is satisfied for perturbations with small `1 norm in the spatial domain, i.e., only a few pixels are
perturbed. This has been observed empirically, where the amplitude spectra of adversarial samples
with bounded `p norms are largely band limited (Yin et al., 2019).

3.1 CIFAR-10 EXPERIMENTS

Fig. 2 reports standard and robust accuracy of image classification models on CIFAR-10 (Krizhevsky
et al., 2009), comparing models with robust training to standard training. We implement our attack
in AutoAttack (Croce & Hein, 2020) and evaluate the robustness of recent defenses available in
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RobustBench (Croce et al., 2020). The attack methods are APGD-CE and APGD-DLR with default
hyperparameters in RobustBench (Croce et al., 2020) and ε = 8/255. Algorithm 1 provides pseudo-
code for our Fourier-`∞ attack. In Appendix F we derive the Fourier-`∞ attack in closed form for
linear models. Theoretical results do not provide any guarantee beyond the maximally robust ε and
on test data. The `2 robustly trained model of Augustin et al. (2020) achieves highest accuracy against
Fourier-`∞ attack, suggesting that the implicit bias of standard training for deep non-linear models
does not match the implicit bias of linear models.

Algorithm 1 Fourier-`∞ Attack (see Appendix F)

Input: data x, label y, loss function ζ , classifier
ϕ, perturbation size ε, number of attack steps m,
dimensions d, Fourier transform F
for k = 1 to m do
ĝ = F(∇xζ(yϕ(x)))

[δ]i = [ĝ]i
|[ĝ]i| , ∀i ∈ {0, . . . , d− 1}

x = x+ εF−1(δ)
end for

Appendix H.3 provide more examples like those
in Fig. 1 for robustly trained models, show-
ing that perturbations are qualitatively different
from those against the standard model. Details
of the experimental setup and more figures and
visualizations appear in Appendix H.

4 EXPLICIT REGULARIZATION

Above we discussed the impact of optimization method and model architecture on robustness. Here,
we discuss explicit regularization as another choice that determines maximal robustness. Appendix D
discusses additional details of this section. Proofs are provided in Appendix E.
Corollary 3 Maximally Robust Classifier via Infinitesimal Regularization. For linearly sepa-
rable data, under conditions of Theorem D.1, solutions to the regularized empirical risk mini-
mization problem, ŵ(λ) = arg minw E(x,y)∼Dζ(yw>x) + λ‖w‖, converges in direction to a
maximally robust classifier as λ → 0. That is, limλ→0 ŵ(λ)/‖ŵ(λ)‖ converges to a solution of
arg maxw{ε | yiw>(xi + δ) > 0, ‖δ‖∗ ≤ ε, ∀i}.

Assuming the solution to the regularized problem is unique, the regularization term replaces other
implicit biases in minimizing the empirical risk. The regularization coefficient controls the trade-
off between robustness and standard accuracy. The advantage of this formulation compared with
adversarial training is that we do not need the knowledge of the maximally robust ε to find a maximally
robust classifier. It suffices to choose an infinitesimal regularization coefficient. Wei et al. (2019,
Theorem 4.1) generalized Theorem D.1 for a family of classifiers that includes fully-connected
networks with ReLU non-linearities, which allows for potential extension of Corollary 3 to non-linear
models.
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Figure 3: Trade-off in robustness against `∞ attack. We
plot the maximally robust ε for adversarial training and ex-
plicit regularization. Robustness is controlled using ε in
adversarial training (left) and regularization coefficient in
explicit regularization (right). Using adversarial training we
have to search for the maximal ε but for explicit regulariza-
tion it suffices to choose a small regularization coefficient.

Fig. 3 illustrates the tradeoff between
standard accuracy and adversarial ro-
bustness for adversarial training and
explicit regularization methods. Ad-
versarial training finds the maximally
robust classifier only if it is trained
with the knowledge of the maximally
robust ε. Without this knowledge, we
have to search for the maximal ε by
training multiple models. This adds
further computational complexity to
adversarial training which performs
an alternated optimization. In contrast,
explicit regularization converges to a
maximally robust classifier for a small enough regularization constant.

5 CONCLUSION

We bridge the two literature on adversarial robustness and optimization bias by revisiting a known
result linking maximally robust classifiers and minimum norm solutions, and combining it with recent
results on the implicit bias of optimizers. We discussed implicit optimization, architectural bias and
explicit regularization as approaches to finding maximally robust classifiers. We designed an optimal
Fourier-`∞ attack and evaluated the robustness of CIFAR-10 models. Our framework facilitates
future study of the implicit robustness of novel architectures and optimizers to more general attacks.
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A INTRODUCTION

Deep neural networks achieve high accuracy on standard test sets, yet Szegedy et al. (2013) showed
that any natural input correctly classified by a neural network can be modified with adversarial pertur-
bations that fool the network into misclassification; even when such perturbations are constrained to
be small enough that do not significantly affect human perception. Adversarially perturbed inputs are
referred to as Adversarial samples. Adversarial training (Goodfellow et al., 2014) was proposed to
improve the robustness of models through training on adversarial samples and further generalized as
a saddle-point optimization problem (Madry et al., 2017). In practice, adversarial training refers to
methods that solve the saddle-point problem approximately by minimizing the loss on adversarial
samples.

Adversarial training is the state-of-the-art approach to adversarial robustness (Gowal et al., 2020;
Croce et al., 2020), as alternative approaches are more probable to exhibit spurious robustness (Tramer
et al., 2020). Nevertheless, adversarial training is also computationally more expensive than standard
training as it involves an alternated optimization. Adversarial training also exhibits a trade-off
between standard generalization and adversarial robustness. That is, it achieves improved robust
accuracy, on adversarially perturbed data, at the expense of standard accuracy, the probability of
correct predictions on natural data (Tsipras et al., 2018). The adversarial robustness trade-off has
been shown to be intrinsic in a number of toy examples (Fawzi et al., 2018b), even independent of
the learning algorithm in some examples (Schmidt et al., 2018). Alternatives to adversarial training
have been proposed to reduce this trade-off but a gap still remains in practice (Zhang et al., 2019).

Here we consider connections between the adversarial robustness trade-off and standard generaliza-
tion of overparametrized models. Deep learning models can often achieve interpolation; i.e., they
have the capacity to exactly fit the training data (Zhang et al., 2016). Their ability to generalize well
in such cases has been attributed to an implicit bias toward simple solutions (Gunasekar et al., 2018a;
Hastie et al., 2019).

Our first contribution is to establish a link between the two bodies of work on adversarial robustness
and standard generalization. Focusing on models that achieve interpolation, we use the formulation
of a Maximally Robust Classifier from robust optimization (Ben-Tal et al., 2009). We analyze models
that achieve perfect training accuracy together with maximal robustness to a given set of perturbations.
We consider training procedures that yield maximally robust classifiers through an implicit bias in the
optimization method, or through explicit regularization. We observe that, in contrast to adversarial
training, under certain conditions we can find maximally robust classifiers at no additional cost.

The link between adversarial robustness and the implicit bias of optimization methods also yields a
natural way to characterize the robustness of linear convolutional models to Fourier-`∞ perturbations.
This result provides a justification for recent observations about Fourier properties of adversarial
perturbations (Tsuzuku & Sato, 2019; Sharma et al., 2019; Yin et al., 2019). As a result, we design
a novel attack with bounded Fourier-`∞ norm and illustrate adversarial attacks against CIFAR-10
models.

B ADDITIONAL DETAILS OF MAXIMALLY ROBUST CLASSIFICATION

One can also show that adversarial training, i.e., solving the saddle-point problem (1), does not
necessarily find a maximally robust classifier. To see this, suppose we are given the maximal ε in
(2). Further assume the minimum of (1) is non-zero. Then the cost in the saddle-point problem does
not distinguish between the following two models: 1) a model that makes no misclassification but
has low confidence, i.e. ∀i, 0 < maxδ yiϕ(xi + δ) ≤ c1 for some small c1 2) a model that classifies
a training point, xj , incorrectly but is highly confident on all other training data and adversarially
perturbed ones, i.e. ∀i 6= j, 0 < c2 < maxδ yiϕ(xi + δ). The second model can incur a loss
nζ(c1)− (n− 1)ζ(c2) on xj while being no worse than the first model according to the cost of the
saddle-point problem. The reason is another trade-off between standard and robust accuracy caused
by taking the expectation over data points.

Definition B.1 Dual norm. Let ‖ · ‖ be a norm on Rn. The associated dual norm, denoted ‖ · ‖∗, is
defined as

‖δ‖∗ = sup
x
{|〈δ,x〉| | ‖x‖ ≤ 1} . (6)
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Definition B.2 Linear Separability. We say a dataset is linearly separable if there exists w, b such
that yi(w>xi + b) > 0 for all i.

For a dataset to be linearly separable, it is sufficient to have d ≥ n and no i, j exist such that xi = xj .

The expression mini yi(w
>xi + b)/‖w‖ is the margin of a classifier w that is the distance of the

nearest training point to the classification boundary, i.e. the line {v : w>v = −b}.
Each formulation in Lemma 2.1 is connected to a wide array of results that can be transferred to other
formulations. Maximally robust classification is one example of a problem in robust optimization.
Other problems such as robust regression as well as robustness to correlated input perturbations
have been studied prior to deep learning (Ben-Tal et al., 2009). In the case of maximally robust
classification, the problem can be reduced and solved efficiently.

On the other hand, maximum margin and minimum norm classification have long been popular
because of their generalization guarantees. Recent theories for overparametrized models link the
margin and the norm of a model to generalization (Hastie et al., 2019). Although the tools are different,
connecting the margin and the norm of a model has also been the basis of generalization theories for
Support Vector Machines and AdaBoost (Shawe-Taylor et al., 1998; Telgarsky, 2013). Maximum
margin classification does not require linear separability, because there can exist a classifier with
ε < 0 that satisfies the margin constraints. Minimum norm classification is the easiest formulation to
work with in practice as it does not rely on ε nor δ and minimizes a function of the weights subject to
a set of constraints.

C ADDITIONAL DETAILS OF IMPLICIT ROBUSTNESS OF OPTIMIZERS

Recall that empirical risk minimization is defined as arg minϕ∈Φ L(ϕ), where L(ϕ) =
E(x,y)∼Dζ(yϕ(x)). Here we assume D is a finite dataset of size n. For the linear family of
functions, we write L(w, b). Hereafter, we rewrite the loss as L(w) and augment the input with
a constant 1 dimension. For linearly separable data and overparametrized models (d > n), there
exist infinitely many linear classifiers that minimize the empirical risk (Gunasekar et al., 2018a). We
will find it convenient to ignore the scaling and focus on the normalized vector w/‖w‖, namely the
direction of w. We will say that the sequence w1,w2, . . . converges in direction to a vector v if
limt→∞wt/‖wt‖ = v.
Definition C.1 Steepest Descent. Let ‖ · ‖ denote a norm, f a function to be minimized, and γ a
step size. The steepest descent method associated with this norm finds

wt+1 = wt + γ∆wt, where

∆wt ∈ arg min
v
〈∇f(wt),v〉+

1

2
‖v‖2 . (7)

The steepest descent step, ∆wt, can be equivalently written as −‖∇f(wt)‖∗ gnst, where
gnst ∈ arg min {〈∇f(wt),v〉 | ‖v‖ = 1} . (8)

A proof can be found in Boyd & Vandenberghe (2004, §9.4).

Remark. For some p-norms, steepest descent steps have closed form expressions. Gradient Descent
(GD) is steepest descent w.r.t. `2 norm where −∇f(wt) is a steepest descent step. Sign gradient
descent is steepest descent w.r.t. `∞ norm where −‖∇f(wt)‖1 sign(∇f(wt)) is a steepest descent
step. Coordinate Descent (CD) is steepest descent w.r.t. `1 norm where −∇f(wt)iei is a steepest
descent step (i is the coordinate for which the gradient has the largest absolute magnitude).
Theorem C.1 Implicit Bias of Steepest Descent (Gunasekar et al. (2018a) (Theorem 5)). For
any separable dataset {xi, yi} and any norm ‖ · ‖, consider the steepest descent updates from
(7) for minimizing the empirical risk L(w) with the exponential loss, ζ(z) = exp (−z). For all
initializationsw0, and all bounded step-sizes satisfying a known upper bound, the iterateswt satisfy

lim
t→∞

min
i

yiw
>
t xi

‖wt‖
= max
w:‖w‖≤1

min
i
yiw

>xi . (9)

In particular, if a unique maximum margin classifier w∗‖·‖ = arg maxw:‖w‖≤1 mini yiw
>xi exists,

the limit direction converges to it, i.e. limt→∞
wt

‖wt‖ = w∗‖·‖.
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In other words, the margin converges to the maximum margin and if the maximum margin classifier
is unique, the iterates converge in direction to w∗‖·‖.

We use this result to derive our Corollary 1.

We also note that Theorem C.1 and Corollary 1, characterize linear models, but do not account for the
bias b. We can close the gap with an augmented input representation, to include the bias explicitly.
Or one could preprocess the data, removing the mean before training.

Definition C.2 Linear convolutional network. An L-layer convolutional network with 1-D circular
convolution is parameterized using weights of L− 1 convolution layers, w1, . . . ,wL−1 ∈ Rd, and
weights of a final linear layer, wL ∈ Rd, such that the linear mapping of the network is

ϕconv(x;w1, . . . ,wL) := w>L (wL−1 ? · · · (w1 ? x)) .

Here, circular convolution is defined as [w ? x]i := 1√
d

∑d−1
k=0[w]−k[x]i+k, where [v]i denotes the

i-th element of a vector v for i = 0, . . . , d− 1, and i = i mod d. 1

A linear convolutional network is equivalent to a linear model with weightsw = wL?(· · ·?(w2?w1))
because of the associative property of convolution. In particular, for two-layer linear convolutional
networks w = w2 ?w1.

Definition C.3 Discrete Fourier Transform. F(w) ∈ Cd denotes the Fourier coefficients of w
where [F(w)]d = 1√

d

∑d−1
k=0[w]k exp(− 2πj

d kd) and j2 = −1.

Theorem C.2 Implicit Bias towards Fourier Sparsity (Gunasekar et al. (2018b), Theorem 2,
2.a). Consider the family of L-layer linear convolutional networks and the sequence of gradient
descent iterates,wt, minimizing the empirical risk, L(w), with the exponential loss, exp (−z). For
almost all linearly separable datasets under known conditions on the step size and convergence of
iterates, wt converges in direction to the classifier minimizing the norm of the Fourier coefficients
given by

arg min
w1,...,wL

{‖F(w)‖2/L | yi〈w,xi〉 ≥ 1, ∀i}. (10)

In particular, for two-layer linear convolutional networks the implicit bias is towards the solution
with minimum `1 norm of the Fourier coefficients, ‖F(w)‖1. For L > 2, the convergence is to a
first-order stationary point.

We use this result to derive our Corollary 2.

D ADDITIONAL DETAILS OF EXPLICIT REGULARIZATION

Definition D.1 Regularized Classification. The regularized empirical risk minimization problem
for linear classification is defined as

ŵ(λ) = arg min
w

E(x,y)∼Dζ(yw>x) + λ‖w‖ , (11)

where λ denotes a regularization constant, ζ is a monotone loss function, and D is a dataset. For
simplicity we assume this problem has a unique solution.

Theorem D.1 Maximum Margin Classifier using Regularization (Rosset et al., 2004), Theorem
2.1. Consider linearly separable finite datasets and monotonically non-increasing loss functions.
Then as λ → 0, the sequence of solutions, ŵ(λ), to the regularized problem in Definition D.1,
converges in direction to a maximum margin classifier as defined in (4). Moreover, if the maximum
margin classifier is unique,

lim
λ→0

ŵ(λ)

‖ŵ(λ)‖
= arg max
w:‖w‖≤1

min
i
yiw

>xi . (12)

1 We use the usual definition of circular convolution in signal processing, rather than cross-correlation,
w↓ ? x with [v↓]i = [v]−i, which is used in deep learning literature, but not associative.
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The original proof was given specifically for `p norms, however we observe that their proof only
requires convexity of the norm, so we state it more generally. Quasi-norms such as `p for p < 1 are
not covered by this theorem. In addition, the condition on the loss function is weaker than our strict
monotonic decreasing condition as shown in (Nacson et al., 2019, Appendix A).

We use this result to derive our Corollary 3.

Explicit regularization has been explored as an alternative approach to adversarial training (Hein &
Andriushchenko, 2017; Sokolić et al., 2017; Zhang et al., 2019; Qin et al., 2019; Guo et al., 2020). To
be clear, we do not propose a new regularization method but rather provide a framework for deriving
and guaranteeing the robustness of existing regularization methods.

E PROOFS

E.1 PROOF OF LEMMA 2.1

Lemma 2.1 Maximally Robust Linear Classifier (Ben-Tal et al. (2009), §12). For linear models
and linearly separable data, the following problems are equivalent; i.e., from a solution of one, a
solution of the other is readily found.

Maximally robust classifier: arg max
w,b

{ε | yi(w>(xi + δ) + b) > 0, ‖δ‖ ≤ ε, ∀i} (3)

Maximum margin classifier: arg max
w,b:‖w‖∗≤1

{ε | yi(w>xi + b) ≥ ε, ∀i} (4)

Minimum norm classifier: arg min
w,b

{‖w‖∗ | yi(w>xi + b) ≥ 1, ∀i} . (5)

Proof. We first show that the maximally robust classifier is equivalent to a robust counterpart by
removing δ from the problem,

arg max
w,b

{ε | yi(w>(xi + δ) + b) > 0, ‖δ‖ ≤ ε, ∀i}

(homogeneity of p-norm)

= arg max
w,b

{ε | yi(w>(xi + εδ) + b) > 0, ‖δ‖ ≤ 1, ∀i}

(if it is true for all δ it is true for the worst of them)

= arg max
w,b

{ε | inf
‖δ‖≤1

yi(w
>(xi + εδ) + b) > 0, ∀i}

= arg max
w,b

{ε | yi(w>xi + b) + ε inf
‖δ‖≤1

w>δ ≥ 0, ∀i}

(definition of dual norm)

= arg max
w,b

{ε | yi(w>xi + b) > ε‖w‖∗, ∀i}

Assuming w 6= 0, which is a result of linear separability assumption, we can divide both sides by
‖w‖∗ and change variables,

= arg max
w,b

{ε | yi(w>xi + b) ≥ ε, ∀i, ‖w‖∗ ≤ 1} ,

where we are also allowed to change > to ≥ because any solution to one problem gives an equivalent
solution to the other given w 6= 0.

Now we show that the robust counterpart is equivalent to the minimum norm classification problem
by removing ε. When the data is linearly separable there exists a solution with ε > 0,

arg max
w,b

{ε | yi(w>xi + b) > ε‖w‖∗, ∀i}

= arg max
w,b

{
ε | yi

(
w>

ε‖w‖∗
xi +

b

ε‖w‖∗

)
≥ 1, ∀i

}

12
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This problem is invariant to any non-zero scaling of (w, b), so with no loss of generality we set
‖w‖∗ = 1.

= arg max
w,b

{
ε | yi

(
w>

ε
xi + b

)
≥ 1, ‖w‖∗ = 1, ∀i

}
Let w′ = w/ε, then the solution to the following problem gives a solution for w,

arg max
w′,b

{
1

‖w′‖∗
| yi(w′>xi + b) ≥ 1, ∀i

}
= arg min

w′,b

{
‖w′‖∗ | yi(w′>xi + b) ≥ 1, ∀i

}
.

E.2 PROOF OF MAXIMALLY ROBUST WITH STEEPEST DESCENT (COROLLARY 1)

Corollary 1 Implicit Robustness of Steepest Descent. For any linearly separable dataset
and any norm ‖ · ‖, steepest descent iterates minimizing the empirical risk, L(w) , satis-
fying the conditions of Theorem C.1, converge in direction to a maximally robust classifier,
arg maxw{ε | yiw>(xi + δ) > 0, ‖δ‖∗ ≤ ε, ∀i}. In particular, a maximally robust classifier
against `1, `2, and `∞ is reached, respectively, by sign gradient descent, gradient descent, and
coordinate descent.

Proof. By Theorem C.1, the margin of the steepest descent iterates, mini
yiw

>
t xi

‖wt‖ , converges as
t→∞ to the maximum margin, maxw:‖w‖≤1 mini yiw

>xi. By Lemma 2.1, any maximum margin
classifier w.r.t. ‖ · ‖ gives a maximally robust classifier w.r.t. ‖ · ‖∗.

E.3 PROOF OF MAXIMALLY ROBUST TO PERTURBATIONS BOUNDED IN FOURIER DOMAIN
(COROLLARY 2)

Corollary 2 Maximally Robust to Perturbations with Bounded Fourier Coefficients. Con-
sider the family of two-layer linear convolutional networks and the gradient descent iter-
ates, wt, minimizing the empirical risk. For almost all linearly separable datasets un-
der conditions of Theorem C.2, wt converges in direction to a maximally robust classifier,
arg maxw1,...,wL

{ε | yiϕconv(xi; {wl}Ll=1) > 0, ‖F(δ)‖∞ ≤ ε, ∀i}, where F denotes the Discrete
Fourier Transform (DFT).

The proof mostly follows from the equivalence for linear models in Appendix E.1 by substituting the
dual norm of Fourier-`1. Here,A∗ denotes the complex conjugate transpose, 〈u,v〉 = u>v∗ is the
complex inner product, [F ]ik = 1√

D
ωikD the DFT matrix where ωD = e−j2π/D, j =

√
−1.

Let ‖ · ‖ be a norm on Cn and 〈·, ·〉 be the complex inner product. Similar to Rn, the associated dual
norm is defined as ‖δ‖∗ = supx{|〈δ,x〉| | ‖x‖ ≤ 1} .

‖F(w)‖1
= sup
‖δ‖∞≤1

|〈F(w), δ〉|

(Expressing DFT as a linear transformation.)
= sup
‖δ‖∞≤1

|〈Fw, δ〉|

= sup
‖δ‖∞≤1

|〈w,F ∗δ〉|

(Change of variables and F−1 = F ∗.)
= sup
‖Fδ‖∞≤1

|〈w, δ〉|

= sup
‖F(δ)‖∞≤1

|〈w, δ〉| .

13



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

E.4 PROOF OF MAXIMALLY ROBUST WITH EXPLICIT REGULARIZATION (COROLLARY 3)

Corollary 3 Maximally Robust Classifier via Infinitesimal Regularization. For linearly sepa-
rable data, under conditions of Theorem D.1, solutions to the regularized empirical risk mini-
mization problem, ŵ(λ) = arg minw E(x,y)∼Dζ(yw>x) + λ‖w‖, converges in direction to a
maximally robust classifier as λ → 0. That is, limλ→0 ŵ(λ)/‖ŵ(λ)‖ converges to a solution of
arg maxw{ε | yiw>(xi + δ) > 0, ‖δ‖∗ ≤ ε, ∀i}.

Proof. By Theorem D.1, the margin of the sequence of regularized classifiers, mini yi
ŵ(λ)>

‖ŵ(λ)‖xi,
converges to the maximum margin, maxw:‖w‖≤1 mini yiw

>xi. By Lemma 2.1, any maximum
margin classifier w.r.t. ‖ · ‖ gives a maximally robust classifier w.r.t. ‖ · ‖∗.

F LINEAR OPERATIONS IN DISCRETE FOURIER DOMAIN

Finding an adversarial sample with bounded Fourier-`∞ involves `∞ complex projection to ensure
adversarial samples are bounded, as well as the steepest ascent direction w.r.t the Fourier-`∞ norm.
We also use the complex projection onto `∞ simplex for proximal gradient method that minimizes
the regularized empirical risk.

F.1 `∞ COMPLEX PROJECTION

Let v denote the `2 projection of x ∈ Cd onto the `∞ unit ball. It can be computed as,

arg min
‖v‖∞≤1

1

2
‖v − x‖22 (13)

= {v : ∀i, vi = arg min
|vi|≤1

1

2
|vi − xi|2} , (14)

that is independent projection per coordinate which can be solved by 2D projections onto `2 the unit
ball in the complex plane.

F.2 STEEPEST ASCENT DIRECTION W.R.T. FOURIER-`∞

Consider the following optimization problem,

arg max
v:‖Fv‖∞≤1

f(v) , (15)

where F ∈ Cd×d is the Discrete Fourier Transform (DFT) matrix and F ∗ = F−1 and F ∗ is the
conjugate transpose.

Normalized steepest descent direction is defined as (See Boyd & Vandenberghe (2004, Section 9.4)),

arg min
v
{∇〈f(w),v〉 : ‖v‖ = 1} . (16)

Similarly, we can define the steepest ascent direction,

arg max
v∈Rd

{|〈∇f(w),v〉| : ‖Fv‖∞ = 1} (17)

(Assuming f is linear.) (18)
arg max
v∈Rd

{|〈g,F ∗Fv〉| : ‖Fv‖∞ = 1} (19)

arg max
v∈Rd

{|〈Fg,Fv〉| : ‖Fv‖∞ = 1} (20)

where g = ∇f(w).
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Consider the change of variable u = Fv ∈ Cd×d. Since v is a real vectors, is DFT is Hermitian, i.e.
u∗i = [u]−i for all coordinates i where j = j mod d. Similarly, Fg is Hermitian.

arg max
u∈Cd:‖u‖∞=1

{|〈Fg,u〉| : u∗i = [u]−i} (21)

arg max
u∈Cd:∀i,|ui|=1

{|[Fg]iui|+ |[Fg]−i u
∗
i | : u∗i = [u]−i} (22)

arg max
u∈Cd:∀i,|ui|=1

{|[Fg]iui|+ |[Fg]∗iu
∗
i | : u∗i = [u]−i} (23)

arg max
u∈Cd:∀i,|ui|=1

{|[Fg]iui| : u∗i = [u]−i} (24)

ui = [Fg]i/|[Fg]i| . (25)

and the steepest ascent direction is vi = F−1ui which is a real vector. In practice, there can be
non-zero small imaginary parts because of numerical issues which we remove.

G RELATED WORK

This paper bridges two bodies of work, on adversarial robustness and optimization bias.

Hypotheses. Goodfellow et al. (2014) proposed the linearity hypothesis that informally suggests
`p adversarial samples exist because deep learning models converge to functions similar to linear
models. To improve robustness, they argued models have to be more non-linear. Based on our
framework, linear models are not inherently weak. When trained, regularized, and parametrized
appropriately they can be robust to some degree, the extent of which depends on the dataset. Gilmer
et al. (2018) proposed adversarial spheres as a toy example where a two layer neural network exists
with perfect standard and robust accuracy for non-zero perturbations. Yet, training a randomly
initialized model with gradient descent and finite data does not converge to a robust model. Based
on our framework, we interpret this as an example where the implicit bias of gradient descent is not
towards the ground-truth model, even though there is no misalignment in the architecture. It would
be interesting to understand this implicit bias in future work.

Fourier Analysis of Robustness. Fourier domain is a natural representation for analysis of human
perception and describing image operations (Wandell & Thomas, 1997; González & Woods, 2008).
Various observations have been made about Fourier properties of adversarial perturbations against
deep non-linear models (Ilyas et al., 2019; Tsuzuku & Sato, 2019; Sharma et al., 2019). Yin et al.
(2019) showed that adversarial training increases robustness to perturbations concentrated at high
frequencies and reduces robustness to perturbations concentrated at low frequencies. Ortiz-Jimenez
et al. (2020) also observed that the measured margin of classifiers in high frequencies is larger than
the margin in low frequencies hence the robustness to high frequency perturbations is higher than
low frequency perturbations. Our result does not distinguish between low and high frequencies
but we establish an exact characterization of robustness. Caro et al. (2020) hypothesized about the
implicit robustness to `1 perturbations in the Fourier domain while we prove maximal robustness
to Fourier-`∞ bounded perturbations. Still a gap remains between our results and deep non-linear
convolutional networks.

Architectural Robustness. An implication of our results is that robustness can be achieved at a
lower computational cost compared with adversarial training by various architectural choices as re-
cently explored (Xie et al., 2020; Galloway et al., 2019; Awais et al., 2020). Morever, for architectural
choices that align with human biases, standard generalization can also improve (Vasconcelos et al.,
2020). Another potential future direction is to rethink `p robustness as an architectural bias and find
inspiration in human visual system for appropriate architectural choices.

Certified Robustness. Adversarially trained models are empirically harder to attack than standard
models. But their robustness is not often provable. Certifiably robust models seek to close this
gap (Hein & Andriushchenko, 2017; Wong & Kolter, 2018; Cohen et al., 2019; Gowal et al., 2018;
Salman et al., 2019). A model is certifiably robust if for any input, it also provides an ε-certificate
that guarantees robustness to any perturbation within the ε-ball of the input. In contrast, a maximally
robust classifier finds a classifier that is guaranteed to be robust to maximal ε while classifying all
training data correctly. That allows for data dependent robustness guarantees at test time. In this
work, we have not explored standard generalization guarantees.
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Robustness Trade-offs Most prior work define the metric for robustness and generalization using
an expectation over the loss. We define robustness based on the accuracy and express it as a set of
conditions to be satisfied. Our approach better matches the security perspective that even a single
inaccurate prediction is a vulnerability. On the other hand, explicit constraints only ensure perfect
accuracy on the training set. As such, standard generalization remains to be studied using other
approaches in deep learning such as using additional assumptions on the data distribution. Existing
work has used assumptions of the data distribution to achieve explicit trade-offs between robustness
and standard generalization (Dobriban et al., 2020; Javanmard & Soltanolkotabi, 2020; Javanmard
et al., 2020; Raghunathan et al., 2020; Tsipras et al., 2018; Zhang et al., 2019; Schmidt et al., 2018;
Fawzi et al., 2018a;b).

Robust Optimization A robust counterpart to an optimization problem considers uncertainty in
the data and optimizes for the worst-case. Ben-Tal et al. (2009) provided extensive formulations and
discussions on robust counterparts to various convex optimization problems. Adversarial robustness
is one such robust counterpart and many other robust counterparts could also be considered in deep
learning. An example is adversarial perturbations with different norm-ball constraints at different
training inputs. Madry et al. (2017) observed the link between robust optimization and adversarial
robustness where the objective is a min-max problem that minimizes the worst-case loss. However,
they did not consider the more challenging problem of maximally robust optimization that we revisit.

Implicit bias of optimization methods. Minimizing the empirical risk for an overparametrized
model with more parameters than the training data has multiple solutions. Zhang et al. (2017)
observed that overparametrized deep models can even fit to randomly labeled training data, yet
given correct labels they consistently generalize to test data. This behavior has been explained using
the implicit bias of optimization methods towards particular solutions. Gunasekar et al. (2018a)
proved that minimizing the empirical risk using steepest descent and mirror descent have an implicit
bias towards minimum norm solutions in overparametrized linear classification. Characterizing the
implicit bias in linear regression proved to be more challenging and dependent on the initialization.
Ji & Telgarsky (2018) proved that training a deep linear classifier using gradient descent not only
implicitly converges to the minimum norm classifier in the space of the product of parameters, each
layer is also biased towards rank-1 matrices aligned with adjacent layers. Gunasekar et al. (2018b)
proved the implicit bias of gradient descent in training linear convolutional classifiers is towards
minimum norm solutions in the Fourier domain that depends on the number of layers. Ji & Telgarsky
(2020) has established the directional alignment the training of deep linear networks using gradient
flow as well as the implicit bias of training deep 2-homogeneous networks. In the case of gradient flow
(gradient descent with infinitesimal step size) the implicit bias of training multi-layer linear models is
towards rank-1 layers that satisfy directional alignment with adjacent layers (Ji & Telgarsky, 2020,
Proposition 4.4). Recently, Yun et al. (2020) has proposed a unified framework for implicit bias of
neural networks using tensor formulation that includes fully-connected, diagonal, and convolutional
networks and weakened the convergence assumptions.

Recent theory of generalization in deep learning, in particular the double descent phenomenon, studies
the generalization properties of minimum norm solutions for finite and noisy training sets (Hastie
et al., 2019). Characterization of the double descent phenomenon relies on the implicit bias of
optimization methods, uses additional assumptions about the data distribution. In contrast, our results
only rely on the implicit bias of optimization and hence are independent of the data distribution.

Robustness to `p-bounded attacks. Robustness is achieved when any perturbation to natural
inputs that changes a classifiers prediction also confuses a human. `p-bounded attacks are the first
step in achieving adversarial robustness. Tramer et al. (2020) has recently shown many recent robust
models only achieve spurious robustness against `∞ and `1 attacks. Croce & Hein (2020) shows
that on image classification datasets there is still a large gap in adversarial robustness to `p-bounded
attacks and standard accuracy. Robustness to multiple `p-bounded perturbations through adversarial
training and its trade-offs has also been analyzed (Tramèr & Boneh, 2019; Maini et al., 2020). Sharif
et al. (2018); Sen et al. (2019) argue that none of `0, `1, `∞, or SSIM are a perfect match for human
perception of similarity. That is for any such norm, for any ε, there exists a perturbation such that
humans classify it differently. Attacks based on other perceptual similarity metrics exist (Zhao et al.,
2020; Liu et al., 2019). This shows that the quest for adversarial robustness should also be seen as a
quest for understanding human perception.
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Figure 4: Maximally robust ε for linear classification against `∞, `2, and `1 attacks. For each
attack, there exists one optimizer and one regularization method that finds a maximally robust
classifier. We compare Coordinate Descent (CD), Gradient Descent with Line Search (GD+LS),
Sign Gradient Descent (SignGD), and explicit `1, `2, and `∞ regularization. The margin of these
classifiers and additional methods are shown in Fig. 5.

Robustness through Regularization Various regularization methods have been proposed for ad-
versarial robustness that penalize the gradient norm and can be studied using the framework of
maximally robust classification. Lyu et al. (2015) proposed general `p norm regularization of gradi-
ents. Hein & Andriushchenko (2017) proposed the Cross-Lipschitz penalty by regularizing the norm
of the difference between two gradient vectors of the function. Ross & Doshi-Velez (2018) proposed
`2 regularization of the norm of the gradients. Sokolić et al. (2017) performed regularization of
Frobenius norm of the per-layer Jacobian. Moosavi-Dezfooli et al. (2019) proposed penalizing the
curvature of the loss function. Qin et al. (2019) proposed encouraging local linearity by penalizing
the error of local linearity. Simon-Gabriel et al. (2019) proposed regularization of the gradient norm
where the dual norm of the attack norm is used. Ma et al. (2020) proposed Hessian regularization.
Guo et al. (2020) showed that some regularization methods are equivalent or perform similarly in
practice. Strong gradient or curvature regularization methods can suffer from gradient masking Ma
et al. (2020).

H EXTENDED EXPERIMENTS

H.1 DETAILS OF LINEAR CLASSIFICATION EXPERIMENTS

For experiments with linear classifiers, we sample n training data points from the N (0, Id), d-
dimensional standard normal distribution centered at zero. We label data points y = sign(w>x),
using a ground-truth linear separator sampled from N (0, Id). For n < d, the generated training data
is linearly separable. This setting is similar to a number of recent theoretical works on the implicit
bias of optimization methods in deep learning and specifically the double descent phenomenon in
generalization (Montanari et al., 2019; Deng et al., 2019). We focus on robustness against norm-
bounded attacks centered at the training data, in particular, `2, `∞, `1 and Fourier-`∞ bounded
attacks.

Because the constraints and the objective in the minimum norm linear classification problem are
convex, we can use off-the-shelf convex optimization toolbox to find the solution for small enough d
and n. We use the CVXPY library (Diamond & Boyd, 2016). We evaluate the following approaches
based on the implicit bias of optimization: Gradient Descent (GD), Coordinate Descent (CD), and
Sign Gradient Descent (SignGD) on fully-connected networks as well as GD on linear two-layer
convolutional networks (discussed in Section 3). We also compare with explicit regularization
methods (discussed in Section 4) trained using proximal gradient methods (Parikh & Boyd, 2013).
We do not use gradient descent because `p norms can be non-differentiable at some points (e.g. `1
and `∞) and we seek a global minima of the regularized empirical risk. We also compare with
adversarial training. As we discussed in Section 1 we need to provide the value of maximally robust
ε to adversarial training for finding a maximally robust classifier. In our experiments, we give an
advantage to adversarial training by providing it with the maximally robust ε. We also use the steepest
descent direction corresponding to the attack norm to solve the inner maximization.

For regularization methods a sufficiently small regularization coefficient achieves maximal robust-
ness. Adversarial training given the maximal ε also converges to the same solution. We tune all
hyperparameters for all methods including learning rate regularization coefficient and maximum step
size in line search. We provide a list of values in Table 1.
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Hyperparameter Values

Random seed 0,1,2
d 100
d/n 1, 2, 4, 8, 16, 32
Training steps 10000

Learning rate 1e−5, 3e−5, 1e−4, 3e−4, 1e−3, 3e−3, 1e−2,
3e−2, 1e−1, 3e−1, 1, 2, 3, 6, 9, 10, 20, 30, 50

Reg. coefficient 1e−7, 1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1,
10, 3e−3, 5e−3, 3e−2, 5e−2, 3e−1, 5e−1

Line search max step 1, 10, 100, 1000
Adv. Train steps 10
Adv. Train learning rate 0.1
Runtime (line search/prox. method) < 20 minutes
Runtime (others) < 2 minutes

Table 1: Range of Hyperparameters. Each run uses 2 CPU cores.
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Figure 5: Margin of models in Fig. 4. Models are trained to be robust against `∞, `2, `1 attacks.
For each attack, there exists one optimizer and one regularization method that finds the maximally
robust classifier. Adversarial training also finds the solution given the maximal ε.

H.2 MARGIN FIGURES

A small gap exists between the solution found using CVXPY compared with coordinate descent.
That is because of limited number of training iterations. The convergence of coordinate descent to
minimum `1 norm solution is slower than the convergence of gradient descent to minimum `2 norm
solution. There is also a small gap between the solution of `1 regularization and CVXPY. The reason
is the regularization coefficient has to be infinitesimal but in practice numerical errors prevent us
from training using very small regularization coefficients.

H.3 VISUALIZATION OF FOURIER ADVERSARIAL ATTACKS

In Figs. 7 to 9 we visualize adversarial samples for models available in RobustBench (Croce et al.,
2020). Fourier-`∞ adversarial samples are qualitatively different from `∞ adversarial samples as
they concentrate on the object.

I VISUALIZATION OF NORM-BALLS

To reach an intuition of the norm-ball for Fourier `∞ norm, we visualize a number of common
norm-balls in 3D in Fig. 10. Norm-balls have been visualized in prior work (Bach et al., 2012) but
we are not aware of any visualization of Fourier-`∞.
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Figure 6: Fourier-`1 margin of Linear Convolutional Models.
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x x+ δ δ |F(δ)|
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x x+ δ δ |F(δ)|

(b) Fourier-`∞ attack

Figure 7: Adversarial attacks (`∞ and Fourier-`∞) against CIFAR-10 with standard training.
WideResNet-28-10 model with standard training. The attack methods are APGD-CE and APGD-DLR
with default hyperparameters in RobustBench. We use ε = 8/255 for both attacks. Fourier-`∞
perturbations are more concentrated on the object.
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Figure 8: Adversarial attacks (`∞ and Fourier-`∞) against CIFAR-10 `∞ model of (Carmon
et al., 2019). Adversarially trained model against `∞ attacks. The attack methods are APGD-CE
and APGD-DLR with default hyperparameters in RobustBench. We use ε = 8/255 for both attacks.
Fourier-`∞ perturbations are more concentrated on the object.

21



Published at ICLR 2021 Workshop on Security and Safety in Machine Learning Systems

x x+ δ δ |F(δ)|

(a) `∞ attack

x x+ δ δ |F(δ)|
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Figure 9: Adversarial attacks (`∞ and Fourier-`∞) against CIFAR-10 `2 model of (Augustin
et al., 2020). Adversarially trained model against `2 attacks. The attack methods are APGD-CE
and APGD-DLR with default hyperparameters in RobustBench. We use ε = 8/255 for both attacks.
Fourier-`∞ perturbations are more concentrated on the object.
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(a) ‖δ‖2 = 1 (b) ‖δ‖1 = 1

(c) ‖δ‖∞ = 1 (d) ‖F(δ)‖∞ = 1

Figure 10: Unit norm balls in 3-D (red) and their 2-D projections (green). Linear models trained with
gradient descent are maximally robust to `2 perturbations. Two-layer linear convolutional networks
trained with gradient descent are maximally robust to perturbations with bounded Fourier-`∞.
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