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ABSTRACT

In this work, we develop efficient disruptions of black-box image translation
deepfake generation systems. We are the first to demonstrate black-box deep-
fake generation disruption by presenting image translation formulations of attacks
initially proposed for classification models. Nevertheless, a naive adaptation of
classification black-box attacks results in a prohibitive number of queries for image
translation systems in real-world applications. We present Leaking Transferable
Perturbations (LTP), an algorithm that significantly reduces the number of queries
needed to attack an image. LTP consists of two phases: (1) a short leaking phase
where we attack the network using traditional black-box attacks and gather infor-
mation on successful attacks on a small dataset and (2) an exploitation phase where
we leverage said information to subsequently attack the network with improved
efficiency. Our attack reduces the total number of queries necessary to attack
GANimation and StarGAN by more than half.

1 INTRODUCTION

The term “deepfake” has recently been adopted in a broader context and can be used to refer to
any altered media of someone’s likeness. Recently there have been remarkable advances in face
modification algorithms and controllable face synthesis Wiles et al. (2018); Ranjan et al. (2018);
Geng et al. (2019); Nguyen-Phuoc et al. (2019); Ghosh et al. (2020). Some algorithms only need
a single image and can create modified versions of that person under different poses, expressions,
lighting and other attribute changes Choi et al. (2018); Pumarola et al. (2018); Choi et al. (2019). The
most advanced algorithms can create puppeteering videos using as few as one image Zakharov et al.
(2019); Tewari et al. (2020). This few-shot deepfake technology based on image translation networks
has gained popularity in the mainstream with apps such as FaceApp fac that allow for transformation
of images such as putting a smile on someone’s face and making them appear older or younger,
among other interventions. These technologies can be used in malicious ways to produce undesirable
content of someone without their consent.

Instead of detecting deepfakes after the fact, Ruiz et al. (2020) recently proposed using white-box
adversarial attacks to protect an image from modification by image translation networks. While
this work assumes that the adversary has access to the model’s structure, weights and gradients, in
a real scenario, these might not be accessible. In this work, we focus on the black-box scenario
where model parameters are unknown and show the vulnerability of several popular image translation
networks. Specifically, we are the first to explore black-box adversarial attacks on image translation
systems with an application of disrupting deepfake generation (Figure 1).

We present a simple, yet highly effective, algorithm that we call Leaking Transferable Perturbations
(LTP) that sharply decreases the average number of queries required to generate attacks in this
scenario. LTP is composed of two phases, a short leaking phase during which the network is attacked
using a traditional black-box attack on a small dataset of images, and an exploitation phase, where
the algorithm leverages the information obtained during the leaking phase to subsequently attack the
network with improved efficiency.
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Figure 1: Illustration of our proposed black-box attack LTP disrupting a deepfake generation system.
After applying an imperceptible filter on the input image (bottom), output of the deepfake generation
system is successfully disrupted preventing malicious change of hair color.

2 RELATED WORK

There is a large amount of work on white-box attacks against discriminative models Szegedy et al.
(2014); Goodfellow et al. (2015); Moosavi-Dezfooli et al. (2016); Papernot et al. (2016); Carlini
& Wagner (2017); Nguyen et al. (2015); Moosavi-Dezfooli et al. (2017); Kurakin et al. (2017);
Madry et al. (2018) as well as black-box attacks against discriminative models Liu et al. (2016);
Narodytska & Kasiviswanathan (2016); Chen et al. (2017); Papernot et al. (2017); Ilyas et al. (2018;
2019); Bhagoji et al. (2018); Cheng et al. (2019); Tu et al. (2019); Guo et al. (2019); Andriushchenko
et al. (2020). There exists a limited amount of work demonstrating adversarial attacks on generative
models Tabacof et al. (2016); Kos et al. (2018); Ruiz et al. (2020) and our work is the first to tackle
adversarial attacks on image translation networks.

3 METHOD

In the black-box adversarial attack setting, we are given a budget of black-box queries for each image
we would like to attack. In this setting, we have the same number of maximum allowed queries for
all images in the dataset. That is, for each image x and target r we want to solve the optimization
problem

min
η
L(G(x+ η), r), subject to p(η) ≤ ε,Q ≤ B, (1)

whereG is the generator of the image translation system, η is the perturbation, Q is the number of
queries used,B is the maximum number of queries allowed for a single image and L is an image-level
regression loss.

Our proposed algorithm seeks to reduce Q by, first, leaking elements of transferable perturbations
from a small auxiliary dataset and then exploiting these transferable components on the images in
the larger test dataset. It has two phases (1) the leaking phase, where we attack the model using a
traditional attack and gather information on successful attacks on a small auxiliary dataset (2) the
exploitation phase where we attack the model using the leaked information from the first phase on
the larger test set. This allows us to sharply reduce the number of amortized queries needed. The two
phases of LTP are demonstrated in Figure 2.

Algorithm Our algorithm has two phases, the leaking phase and the exploitation phase. During the
leaking phase, it performs a traditional black-box attack on a separate dataset Ds consisting of Ns

images, drawn from the same distribution as our test dataset D. We extract principal components
from these perturbations using principal component analysis (PCA). During the exploitation phase
we use the principal components to improve the efficiency of our black-box attacks on the test dataset
D. We accomplish this by querying the black-box using the leaked principal components using a
modified IT-alg. We implement IT-NES, IT-Bandits-TD, IT-SimBA, and IT-Square as variants for
IT-alg. We achieve strong attacks using fewer queries.

Leaking Phase During the leaking phase we apply a black-box attack on a leaking dataset Ds. We
attack all images x ∈ Ds until we achieve successful attacks (L(G(x+ η), r) < τ , where τ is the
success threshold) or until we use a maximum number of Q queries. We create a set P of generated
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Figure 2: Illustration of our LTP pipeline. During the leaking phase, black-box image translation
attacks are performed on the small leaking dataset and a set of generated perturbations P are collected.
Using this set of generated perturbations, the algorithm finds strong attacks efficiently during the
exploitation phase by exploring the perturbation directions given by the principal components of P .

perturbations η. Our framework is general and any attack or combination of attacks can be used for
the leaking phase. We use PCA on perturbations η ∈ P and extract principal components q ∈ Q.

Exploitation Phase Our exploitation phase consists of using a modified IT-SimBA using q ∈ Q as
candidate vectors. Since Q is not necessarily a basis of the image space (because Ns < d2), and
even though the initial iterations of the attack very rapidly decrease the loss, the attack might saturate.
We switch to a full basis in image space Γ after a number of iterations nsat of saturating loss. The
resulting attacks achieve strong results using substantially fewer queries Q.

4 EXPERIMENTS

In this section we attack GANimation and StarGAN using IT-NES, IT-Bandits-TD, IT-SimBA,
IT-Square and our proposed method LTP.

4.1 EXPERIMENTAL SETUP

Architectures and Datasets We attack the GANimation Pumarola et al. (2018) and StarGAN Choi
et al. (2018) architectures. For GANimation we attack three expressions coded with distinct facial
action units (AUs) and present average results. The expressions correspond to “smile with closed
eyes”, “smile with open eyes” and “surprised eyebrow raise”. For StarGAN we present average
results over 5 different attribute classes. The classes are “black hair”, “blond hair”, “brown hair”,
“female” and “old”. The dataset used for both architectures is the CelebA dataset Liu et al. (2015).
For GANimation we attack 1,000 images using each expression, yielding 3,000 individual attacks.
For StarGAN we attack 200 images using 5 different classes, yielding 1,000 individual attacks.

Implementation Details We use adapt versions of the official NES, Bandits-TD, SimBA and the
state-of-the-art Square Attack implementations ban; sim; squ for the image translation scenario. We
prepend the image translation versions with “IT”.

For GANimation we build our leaked PCA components using 100 images, for each of the three
expressions evaluated. We attack them using IT-NES with a 0.005 success threshold and 1,000
max iterations. We perform 351.9 queries on average per image. For StarGAN we build our PCA
components using 10 images and 5 classes. We attack them using IT-NES with a 0.05 success
threshold and 1,000 max iterations. We perform 928.4 queries on average per image.

4.2 EXPERIMENTAL RESULTS

GANimation We attack GANimation using an identity attack, where we select the target image
r to be the input image, such that using our attack we push the network output to be the same
as the input. We select a success threshold of τ = 0.005, meaning that we halt the attack when
L(G(x+ η),x) ≤ τ . After a successful attack at this threshold the transformations by GANimation
are not noticeable. We use a maximum number of queriesB = 10, 000 for all methods. In Table 1
(left) we show comparisons between LTP, IT-NES, IT-Bandits-TD, IT-SimBA and IT-Square. We
can see that LTP is much more efficient than other methods achieving a ˜56% reduction in average
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GANimation
Attack Avg. Queries ↓ Avg. Norm ↓ FID ↓ Success Rate ↑
IT-NES 598 1.82 6.30 98.8%

IT-Bandits-TD 855 4.38 8.49 96.3%
IT-SimBA 551 4.87 7.68 97.9%
IT-Square 531 5.00 8.96 98.8%

LTP 231 2.42 6.30 98.8%

StarGAN
Attack Avg. Queries ↓ Avg. Norm ↓ FID ↓ Success Rate ↑
IT-NES 1,001 2.90 25.22 99.8%

IT-Bandits-TD 4,901 4.99 12.34 52.2%
IT-SimBA 444 5.93 50.39 100%
IT-Square 3,856 5.00 20.77 98.7%

LTP 155 5.28 45.01 100%

Table 1: Attack comparison on GANimation (left) and on StarGAN (right). We show the mean
number of queries per image, the average norm of the perturbation, the FID score of the attacked
outputs and the success rate percentage.

Figure 3: Success rate by number of queries on 3,000 attacks on GANimation (left) and 1,000 attacks
on StarGAN (right).

queries (231 vs. 531) compared to the next best method (IT-Square). Our method also achieves
a lower average perturbation norm than the comparable IT-SimBA attack as well as an improved
success rate. We also compute FID scores Heusel et al. (2017) for the disrupted network outputs,
comparing the feature distributions of attacked outputs with the feature distribution of the original
images. Thus, FID measures how similar the attacked output images are to the intact inputs. LTP
achieves the lowest FID score, reflecting that the images have been preserved to a greater extent.
Figure 3 (left) shows the cumulative histogram of images successfully attacked for the number of
queries represented by the x-axis. We observe that LTP achieves superior results compared to other
algorithms.

StarGAN We attack 200 images on the StarGAN architecture using 5 different attribute classes. We
use a maximum distortion attack (called optimal attack in Ruiz et al. (2020)), where the target image r
is the non-attacked output imageG(x) and we maximize the loss instead of minimizing it to achieve
the maximum amount of distortion in the output image. We present results for a threshold τ = 0.05,
where the output image is visibly distorted. We use a maximum number of queriesB = 10, 000 for
all methods. In Table 1 (right) we show comparisons between IT-NES, IT-Bandits-TD, IT-SimBA,
IT-Square and LTP. We can see that LTP is much more efficient than other methods achieving a
reduction in mean queries of ˜65% compared to the next best attack and achieving a 100% success
rate. We compute FID scores for the disrupted network outputs, comparing the feature distributions
of attacked outputs with the feature distribution of the ground-truth network outputs. Thus, FID
measures how different the attacked output images are to the deepfake generated images. LTP
achieves a very high FID score, reflecting that the images have been corrupted to a large extent using
the maximum distortion attack. In this case the average norm is higher than some competing methods.
Qualitative analysis of images shows that the attack remains imperceptible. Figure 3 (right) shows the
cumulative histogram of images successfully attacked for a specific number of queries. We observe
that LTP achieves superior results compared to IT-SimBA, IT-NES, IT-Bandits-TD and IT-Square.

Conclusion We presented results for the strongest attack types for StarGAN (maximum distortion)
and GANimation (identity). These are the first successful black-box attacks on image translation
systems. Our results demonstrate that LTP is more efficient than competing methods. This is a
consequence of the transferability of the leaked PCA components that are subsequently used as
candidate vectors during the exploitation phase. We find that image translation architectures have
specific vulnerabilities and that there exist correlations between attacks constructed for different
images. This is the nugget of intuition that motivates our approach.
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